京公网安备 11010802034615号
经营许可证编号:京B2-20210330
DMP如何开启大数据营销的价值潜力
数据的挖掘,DMP技术的应用,让互联网营销更上一层楼,然而“看不见”的数据孤岛,却成为潜藏在营销过程中的一大难题。技术如何联结世界?DMP如何开启大数据营销价值潜力?
纵观全球广告市场,大数据在过去几年一直保持着年均两位数的高速增长,2015年中国整个大数据及相关的市场规模达到160亿,预计未来5年,大数据将会继续保持高速发展并带来亿万美元的全球性机遇。很多优秀的企业都在大数据营销行业中耕耘,在这个复杂的市场中争夺一个有利位置。
数字营销行业的未来,一定是数据的未来。在未来整个人类社会里,所有消费者的行为,所有的媒体都将数字化,甚至所有的场景都是数字化的。品牌也拥有自己的品牌数字资产和互动数据资产。
我们知道,每个品牌虽然都有自己的会员数据、CRM数据,电商数据、官网数据……但这些数据很多是碎片化的,是数据孤岛,没有彼此打通。因此,打通跨屏数据,构建品牌自身的DMP,联结旗下每个品牌、每个产品和每个消费者之间的关系,成为品牌营销的切实之需。基于此,我们需要把各种各样碎片化的数据,在不侵犯消费者隐私的情况下彻底打通,真正应用到大数据营销领域;提高每一次营销活动的投入产出比,为广告主提供解决方案。
这是一个数据联结一切的时代,也是一个数据碎片化、数据泛滥的时代。如今,网民的触媒习惯日益复杂,90%以上的人会切换使用不同的设备,包括手机、电脑、平板和电视。设备ID碎片化远超于大家的想象,Cookie碎片化同样超乎想象。跨终端识别的难度相当于拼一套十亿片的拼图。
与此同时,虚假数据也是数字营销行业的一大顽疾,以往的程序化购买很难鉴别流量的真实与否,很多广告主的投放花费,有一部分都浪费在虚假流量里,无法收回,在DMP上提前预知流量虚假与否,成为广告主急迫的现实需求。
此外,互联网媒体间数据的不开放,也对整个行业的数据联结和跨媒体监测产生了一定阻隔。
基于以上行业现状及挑战,广告主和媒体又是如何看待DMP在当下大数据营销中的作用?
>>广告主:DMP是大势所趋,量化消费者兴趣点,建立基于用户的衡量体系。
宝洁大中华区媒介部总经理徐樱丹Freda曾表示:对于大数据的利用,最基本的一步,是将设备及数据联结起来,还原成一个人,第二步是分析用户的行为习惯,未来每个人的消费行为都会被数据化,我们需要把这些数据还原成人的喜好和特点,以判定他和品牌的关系,进而做出营销决策。
百胜集团市场共享部总监张之彦也曾表示:我们更多地要把关注从流量更多地集中向用户,我们应该关注用户的行为以及这些行为聚集以后产生的一个聚合效应。我们更希望建立一套基于用户为出发点大数据的场景,基于此,广告主可以为用户打造真正属于每一个品牌,每一个企业的ID,而这个独特的ID会成为品牌的营销利器。
DMP不止是广告应用。大数据应用有两个层面,一是广告层面,一个是CRM应用。在程序化精准营销过程中,数字应用和商业价值要有一个平衡需求。
真正用好大数据,需要数据同内容结合在一起。互联网,让整个商业控制权从品牌转移到老百姓手上,如果DMP抓住人群的标签,用最合适的目标场景内容去影响消费者,让数据与内容不断交相辉映,那么营销也会变得容易。
>>媒体:愿意与广告主分享数据,基于此建立互惠共生的商业生态模式。
腾讯OMG广告平台产品部总经理刘曜表示:营销界缺乏数据,媒体为广告主提供数据,这是互惠共生的关系。但并不赞同将数据快速做成商品化的权宜之计,而是希望和业界一起探讨共赢的商业模式,让广告更加精准,为品牌营销带来长远利益。
数据联结是一个难度较大的问题,越是复杂的行为,多重来源的需求越复杂。互联网营销精准到一定程度后,会有多重模式竞争替换。在保障数据安全基础上,为广告主开放数据,因为DMP不只是用于广告主投媒体。
【无论是广告主,还是媒体,DMP的意义都不言而喻】
DMP的出现,让大数据的精准有多重价值,它为营销生态里各方的联结创造了一个入口,在这里,广告主和媒体可以联结起来,跨屏终端可以联结起来,PC、手机、电视可以联结起来,通过生态开放和各方联结,激发出更多的商业价值和营销模式。
大数据时代要做到最优营销决策,就要用最好的数据做最好的分析,产生最好的数据应用。打通用户生态,以数据联结用户,起到人群定制挖掘,精准人群触达的效果。并利用数据全维度分析种子用户建立数据模型,挖掘品牌潜在用户。
放眼人类历史上的四次传播革命,从文字、印刷术、大众媒体到互联网,从大视野看我们的时代, 数字营销的创新及发展趋势,离不开技术和新的思维方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27