
DMP如何开启大数据营销的价值潜力
数据的挖掘,DMP技术的应用,让互联网营销更上一层楼,然而“看不见”的数据孤岛,却成为潜藏在营销过程中的一大难题。技术如何联结世界?DMP如何开启大数据营销价值潜力?
纵观全球广告市场,大数据在过去几年一直保持着年均两位数的高速增长,2015年中国整个大数据及相关的市场规模达到160亿,预计未来5年,大数据将会继续保持高速发展并带来亿万美元的全球性机遇。很多优秀的企业都在大数据营销行业中耕耘,在这个复杂的市场中争夺一个有利位置。
数字营销行业的未来,一定是数据的未来。在未来整个人类社会里,所有消费者的行为,所有的媒体都将数字化,甚至所有的场景都是数字化的。品牌也拥有自己的品牌数字资产和互动数据资产。
我们知道,每个品牌虽然都有自己的会员数据、CRM数据,电商数据、官网数据……但这些数据很多是碎片化的,是数据孤岛,没有彼此打通。因此,打通跨屏数据,构建品牌自身的DMP,联结旗下每个品牌、每个产品和每个消费者之间的关系,成为品牌营销的切实之需。基于此,我们需要把各种各样碎片化的数据,在不侵犯消费者隐私的情况下彻底打通,真正应用到大数据营销领域;提高每一次营销活动的投入产出比,为广告主提供解决方案。
这是一个数据联结一切的时代,也是一个数据碎片化、数据泛滥的时代。如今,网民的触媒习惯日益复杂,90%以上的人会切换使用不同的设备,包括手机、电脑、平板和电视。设备ID碎片化远超于大家的想象,Cookie碎片化同样超乎想象。跨终端识别的难度相当于拼一套十亿片的拼图。
与此同时,虚假数据也是数字营销行业的一大顽疾,以往的程序化购买很难鉴别流量的真实与否,很多广告主的投放花费,有一部分都浪费在虚假流量里,无法收回,在DMP上提前预知流量虚假与否,成为广告主急迫的现实需求。
此外,互联网媒体间数据的不开放,也对整个行业的数据联结和跨媒体监测产生了一定阻隔。
基于以上行业现状及挑战,广告主和媒体又是如何看待DMP在当下大数据营销中的作用?
>>广告主:DMP是大势所趋,量化消费者兴趣点,建立基于用户的衡量体系。
宝洁大中华区媒介部总经理徐樱丹Freda曾表示:对于大数据的利用,最基本的一步,是将设备及数据联结起来,还原成一个人,第二步是分析用户的行为习惯,未来每个人的消费行为都会被数据化,我们需要把这些数据还原成人的喜好和特点,以判定他和品牌的关系,进而做出营销决策。
百胜集团市场共享部总监张之彦也曾表示:我们更多地要把关注从流量更多地集中向用户,我们应该关注用户的行为以及这些行为聚集以后产生的一个聚合效应。我们更希望建立一套基于用户为出发点大数据的场景,基于此,广告主可以为用户打造真正属于每一个品牌,每一个企业的ID,而这个独特的ID会成为品牌的营销利器。
DMP不止是广告应用。大数据应用有两个层面,一是广告层面,一个是CRM应用。在程序化精准营销过程中,数字应用和商业价值要有一个平衡需求。
真正用好大数据,需要数据同内容结合在一起。互联网,让整个商业控制权从品牌转移到老百姓手上,如果DMP抓住人群的标签,用最合适的目标场景内容去影响消费者,让数据与内容不断交相辉映,那么营销也会变得容易。
>>媒体:愿意与广告主分享数据,基于此建立互惠共生的商业生态模式。
腾讯OMG广告平台产品部总经理刘曜表示:营销界缺乏数据,媒体为广告主提供数据,这是互惠共生的关系。但并不赞同将数据快速做成商品化的权宜之计,而是希望和业界一起探讨共赢的商业模式,让广告更加精准,为品牌营销带来长远利益。
数据联结是一个难度较大的问题,越是复杂的行为,多重来源的需求越复杂。互联网营销精准到一定程度后,会有多重模式竞争替换。在保障数据安全基础上,为广告主开放数据,因为DMP不只是用于广告主投媒体。
【无论是广告主,还是媒体,DMP的意义都不言而喻】
DMP的出现,让大数据的精准有多重价值,它为营销生态里各方的联结创造了一个入口,在这里,广告主和媒体可以联结起来,跨屏终端可以联结起来,PC、手机、电视可以联结起来,通过生态开放和各方联结,激发出更多的商业价值和营销模式。
大数据时代要做到最优营销决策,就要用最好的数据做最好的分析,产生最好的数据应用。打通用户生态,以数据联结用户,起到人群定制挖掘,精准人群触达的效果。并利用数据全维度分析种子用户建立数据模型,挖掘品牌潜在用户。
放眼人类历史上的四次传播革命,从文字、印刷术、大众媒体到互联网,从大视野看我们的时代, 数字营销的创新及发展趋势,离不开技术和新的思维方式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07