 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		大数据涉足征信行业 企业信用将被颠覆
互联网时代,信息传播快速,市场竞争越来越严酷,企业信息不再是隐私,企业想要更好发展,就必须重视信用建设。本文将围绕征企业征信建设、传统与大数据征信来为大家揭开征信谜题
孟子有言:“至诚而不动者,未之有也;不诚,未有能动者也。”简而言之,这句话告诉我们做人要诚实守信,不真诚是无法感动人的。同理,企业信用的良 好与否也将决定着企业的生存命脉。然而,在市场经济的社会背景下,一些企业以快速盈利为目的不择手段,甚至以损害公司品牌名誉赚钱,道德底线沦陷,诚信缺 失尤其严重。
在此种因素下,社会大众在选择商品时越来越关注企业的信用,同样的企业也需要通过提升自己的信用建设良好的品牌形象。互联网时代,信息传播快速,市场竞争越来越严酷,企业信息不再是隐私,企业想要更好发展,就必须重视信用建设。 堂主将围绕征企业征信建设、传统与大数据征信来为大家揭开征信谜题。
完善企业信用档案好名声迎来诚信红利
堂主认为,企业信用建设不仅可以提升企业的知名度、信任度、影响力,还能带来更多的因为缺乏信任度而忽略掉的合作以及交易机会,大大提高企业在市场上的竞争力。信用积累,并非一天两天,堂主建议,企业建立信用档案越早加入越好!
在互联网高速发展的今天,企业可以通过“做广告”,有效地宣传企业品牌,但是无法传播信用,而信用档案将会是企业最好的广告。所以说,企业诚信不仅仅是社会诚信体系建设的重要支撑,还能为企业获得好的名声,带来诚信红利。
快速建设企业征信大数据更有优势
目前社会上有两种征信模式,传统征信和大数据征信。传统征信面临征信数据不全、接入门槛高、平台上传数据积极性低、更新不及时等多种问题。而大数据征信模式利用自身海量的数据优势,汇聚所有信息流,整理成企业信用报告,我们可以从报告中快速判断一家企业是否值得大众信赖、有没有不良记录以及合作风险 等情况。
大数据征信一般采用数学模型算法,免去了很多人工操作,避免了人为判断对结果的干扰。更重要的是,通过大数据能够及早预测风险,提前做好预防措施,降低风险的发生率。未来征信业的发展方向将以大数据征信为代表,全面改变商业交易模式。
360度构建企业画像 攻破企业征信难题
企业信用建设迫在眉睫,数据堂依托多年数据积累,整合了多个数据资源,利用数据挖掘技术,从多个维度构建企业画像,形成一套完善的企业征信数据服务体系。拿数据堂新推出的“企业360画像”产品来讲,我们从多个角度来探讨企业征信的用途。
(1)金融风控:做贷款前的信息核查、风险识别等,如:依据对企业基本信息、法院判决信息、关联企业信息、司法拍卖信息、失信信息等信息的变更进行全方面的风险监控。
(2)投资评估:依据企业基本信息、年报信息、关联企业等方面的数据服务,给投资者提供详实、精准、快速的企业信息,有效规避了企业及个人金融交易、尽职调查、投行评估等风险。
(3)企业征信报告:为制作企业征信报告的客户提供全方位的数据服务,全面记录企业各类经济活动,反应企业信用状况。最终帮助企业提前制定应对措施,主动调整合作方式,尽可能地规避商业风险。
借力大数据 企业开辟新格局
对于企业来讲,未来的竞争不单单是品牌的竞争,也是信用的竞争。互联网快速发展,为信用风险评估开辟了新的格局,大数据为企业征信提供了有力的技术后盾,但同时我们也要从泛滥的大数据中识珠,找到影响企业的风险因素所在,才能在变幻莫测的市场里不断成长壮大。
数据堂作为专业的大数据资源运营商,利用多个行业的数据资源,并对数据进行挖掘重组,勾画出360度的企业画像,助力企业征信数据多样性、创新性的发展,数据价值得以最大化的体现。
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23