京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据涉足征信行业 企业信用将被颠覆
互联网时代,信息传播快速,市场竞争越来越严酷,企业信息不再是隐私,企业想要更好发展,就必须重视信用建设。本文将围绕征企业征信建设、传统与大数据征信来为大家揭开征信谜题
孟子有言:“至诚而不动者,未之有也;不诚,未有能动者也。”简而言之,这句话告诉我们做人要诚实守信,不真诚是无法感动人的。同理,企业信用的良 好与否也将决定着企业的生存命脉。然而,在市场经济的社会背景下,一些企业以快速盈利为目的不择手段,甚至以损害公司品牌名誉赚钱,道德底线沦陷,诚信缺 失尤其严重。
在此种因素下,社会大众在选择商品时越来越关注企业的信用,同样的企业也需要通过提升自己的信用建设良好的品牌形象。互联网时代,信息传播快速,市场竞争越来越严酷,企业信息不再是隐私,企业想要更好发展,就必须重视信用建设。 堂主将围绕征企业征信建设、传统与大数据征信来为大家揭开征信谜题。
完善企业信用档案好名声迎来诚信红利
堂主认为,企业信用建设不仅可以提升企业的知名度、信任度、影响力,还能带来更多的因为缺乏信任度而忽略掉的合作以及交易机会,大大提高企业在市场上的竞争力。信用积累,并非一天两天,堂主建议,企业建立信用档案越早加入越好!
在互联网高速发展的今天,企业可以通过“做广告”,有效地宣传企业品牌,但是无法传播信用,而信用档案将会是企业最好的广告。所以说,企业诚信不仅仅是社会诚信体系建设的重要支撑,还能为企业获得好的名声,带来诚信红利。
快速建设企业征信大数据更有优势
目前社会上有两种征信模式,传统征信和大数据征信。传统征信面临征信数据不全、接入门槛高、平台上传数据积极性低、更新不及时等多种问题。而大数据征信模式利用自身海量的数据优势,汇聚所有信息流,整理成企业信用报告,我们可以从报告中快速判断一家企业是否值得大众信赖、有没有不良记录以及合作风险 等情况。
大数据征信一般采用数学模型算法,免去了很多人工操作,避免了人为判断对结果的干扰。更重要的是,通过大数据能够及早预测风险,提前做好预防措施,降低风险的发生率。未来征信业的发展方向将以大数据征信为代表,全面改变商业交易模式。
360度构建企业画像 攻破企业征信难题
企业信用建设迫在眉睫,数据堂依托多年数据积累,整合了多个数据资源,利用数据挖掘技术,从多个维度构建企业画像,形成一套完善的企业征信数据服务体系。拿数据堂新推出的“企业360画像”产品来讲,我们从多个角度来探讨企业征信的用途。
(1)金融风控:做贷款前的信息核查、风险识别等,如:依据对企业基本信息、法院判决信息、关联企业信息、司法拍卖信息、失信信息等信息的变更进行全方面的风险监控。
(2)投资评估:依据企业基本信息、年报信息、关联企业等方面的数据服务,给投资者提供详实、精准、快速的企业信息,有效规避了企业及个人金融交易、尽职调查、投行评估等风险。
(3)企业征信报告:为制作企业征信报告的客户提供全方位的数据服务,全面记录企业各类经济活动,反应企业信用状况。最终帮助企业提前制定应对措施,主动调整合作方式,尽可能地规避商业风险。
借力大数据 企业开辟新格局
对于企业来讲,未来的竞争不单单是品牌的竞争,也是信用的竞争。互联网快速发展,为信用风险评估开辟了新的格局,大数据为企业征信提供了有力的技术后盾,但同时我们也要从泛滥的大数据中识珠,找到影响企业的风险因素所在,才能在变幻莫测的市场里不断成长壮大。
数据堂作为专业的大数据资源运营商,利用多个行业的数据资源,并对数据进行挖掘重组,勾画出360度的企业画像,助力企业征信数据多样性、创新性的发展,数据价值得以最大化的体现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29