京公网安备 11010802034615号
经营许可证编号:京B2-20210330
插上“大数据”翅膀 “捕鼠”从此大不同
“社会上多余的资金很多,为什么不愿意进入股市?就是因为他在信息上抢不过别人,光看K线没有用,不管是大老鼠,小老鼠,也许是看起来比较可爱的米老鼠,都是很可怕的。”这是一位资深股民吐露的心声。
而在大数据时代,监管者的“捕鼠”工具全面升级,这犹如阿基米德找到了撬动地球的支点,整个资管行业已然一片风声鹤唳。
监管者利用大数据系统“捕鼠”最早体现在2013年的马乐事件上。此后开始的老鼠仓调查风暴,很多线索来源都是来自于交易所日常监控下的大数据分析。“捕鼠”行动插上“大数据”翅膀,效果的确立竿见影。
此前的老鼠仓查处案件,线索来源多来自于举报与现场突击检查等,或是从其他案件顺延发现线索。交易所数据应用流程通常是先发现个股触动异动指标,随之核查该公司是否有特殊信息公布以及与之相关的可疑账户锁定。这种迹象即成为线索,按一定程序报送至证监会,证监会决定是否立案。
据记者了解,多年之前,证监会基金部建立了一套监测基金公司非公平交易的系统,可实时掌握基金公司不同基金产品间利益输送行为。这套系统后来与沪深交易所的异常交易系统相结合,逐步发展出完善的市场异动监测工具。
目前,交易所的大数据系统大致可以分为交易数据和文本数据两块。文本数据系从美国学习引进的技术;而交易数据的挖掘,事实上是一个很成熟的学科,但应用到股票交易的监管上,仍然需要一线监管和稽查执法的经验总结。
在业内看来,区分高度相似的交易到底是巧合还是老鼠仓,需要进行大量的历史分析。一个月的数据远远不够,至少需要一年,甚至三到五年。在这样一个长的时间跨度内,如果大量的交易行为与老鼠仓的特征吻合,则作为证据的证明能力更强。
具体来看,上交所异动指标分为4大类72项,敏感信息分为3级共11大类154项;深交所建立了9大报警指标体系,合计204个具体项目。此外,深交所监察系统即可同步实现超过204个报警指标、300项实时与历史统计查询、60余项专用调查分析、100多种监管报表监测分析等功能,每年处理的各类实时报警信息14万余次,平均每个交易日处理报警600余次。
“过去查老鼠仓还会到公司来查封电脑,现在得益于大数据系统的应用,稽查部门在老鼠仓案件中收集掌握的证据更加有效,在侦查阶段基本上不打草惊蛇,不用直接接触被调查对象和相关公司,证据确凿后,公安局直接就把人带走了。”一位基金从业者说。
更令人欣喜的是,大数据的应用或将进入一个更新的高度。据记者了解,不久前证监会主席办公会刚批准通过的证监会中央监管信息平台,可以将目前分散在证券监管领域各个角落的信息集合起来,即包括交易所数据库,也包括各层级证券监管部门的日常监管、检测数据信息。
“这将是一个智能化、云数据的平台,未来会对提高稽查执法效率等起到很大作用。”接近监管层的相关人士表示,此外,监管层也在进一步加强稽查执法力量。比如眼下已在上海和深圳增编稽查支队,每个支队增加了近100人。从技术到人力资源配置,未来的稽查风暴将成为常态化。
在“捕鼠”行为更为智能、更为常态化的形势下,不少业内人士都感觉“压力山大”。目前,借助大数据系统,“捕鼠”风暴已从基金圈刮向了券商。有券商短短数周内接连召集分析师突击开会强调风险。不少分析师坦言,这一轮风暴的紧张程度之高已经超过了其职业生涯的其他时刻。
“近一个月,我们已经专门就做好风险规避工作开了四五次会。”有券商分析人士透露,公司异地设立的研究所听说也召开了内部会议,主要内容依然是严格要求按风控规程操作,研究报告不允许违规传播,不管是邮件、QQ还是微信都要谨慎提及个股,严禁传播内幕信息。
多位券商人士表示,“眼下这场已经延续了数月的风暴已经不再仅仅盯着基金经理,而已横扫资本市场各个利益环节,券商、保险、私募都难逃一查。”
5月9日,证监会通报了平安资产管理公司一位投资管理人员涉嫌老鼠仓。北京市公安局于5月13日通报了另一起保险公司权益投资部门总经理的老鼠仓案件,且已正式批捕。这两起案件的共同特点是涉案累计金额巨大,均在亿元以上。
从证监会最新信号来看,此次“捕鼠”行动绝不是“一轮运动”。5月19日,证监会主席肖钢在学习落实“新国九条”的讲话中表示将坚决打击证券期货违法犯罪行为。加强对证券期货违法违规行为的监测和线索发现,将坚决打击欺诈上市、虚假信息披露、内幕交易、操纵市场等各种违法违规行为,并特别强调会“始终保持高压态势”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27