京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”推动银行业务创新
大数据运用在提升效率、降低成本、加强风控、创造价值等方面,对银行业务发展的贡献度正日益显现。近年来,越来越多的以大数据为核心的应用创新业务不断推出,在为客户提供更优质金融服务的同时,也使得银行运转得更为高效和顺畅。
大数据时代的到来,正在深刻地影响着社会经济生活的方方面面。面对大数据给金融竞争格局和商业经营模式带来的巨大影响,商业银行纷纷以互联网金融思维和大数据理念,推动金融产品和服务创新。而在这一轮基于互联网和大数据的创新热潮中,如何深入到数据价值链核心,从中发掘和创造价值,助力各项业务发展,是目前商业银行在实践应用中的关键所在。
记者近日在对光大银行的采访中了解到,大数据运用在提升效率、降低成本、加强风控、创造价值等方面,对银行业务发展的贡献度正日益显现。近年来,越来越多的以大数据为核心的应用创新业务不断推出,在为客户提供更优质金融服务的同时,也使得银行运转得更为高效和顺畅。
2012年年中,光大银行面向全行财富客户和私人银行客户推出了其自主研发的阳光理财·资产配置平台(AAP)。截至今年3月25日,AAP平台直接和间接促成的理财产品、代销基金、代销保险和其他产品的销售总额达到84.28亿元,其中通过AAP平台直接促成的销售额为28.73亿元,基于AAP平台生成的财富管理报告书达成的销售额为30.81亿元,预估通过门户网站达成的销售额为24.75亿元。
两年84.28亿元的销售额,对于零售金融服务的支持平台而言可谓战绩显赫。光大银行AAP平台的研发思路和服务理念,被认为是对大数据思维的一次成功运用,并由此开创了国内银行零售金融服务支持系统的先河。
“基于AAP平台,我们不仅实现了零售业务的交叉销售,最重要地是能够具体分析客户需求,进而为他们提供一站式的综合金融服务。”光大银行零售业务部负责人对记者表示:“AAP平台的推出,实际上帮助我们在转型路上迈进了一大步”。
在记者看来,银行理财业务转型的重要标志之一是从“卖产品”到“做服务”。2008年以后,国内银行理财业务发展迅猛,理财产品日益丰富,但与此同时也面临日趋严重的同质化问题。在国内银行理财市场打拼十年且一直走在同行前列的光大银行,开始转变思路、调整战略,希望从单纯地销售产品转向为客户提供个性化综合金融服务,将阳光理财塑造为“中长期机构投资者”的专业形象。而在这一重要转型过程中,以数据为支撑的AAP平台无疑起到了关键作用。
通常在银行内部,零售金融产品分部门或处室进行管理,多年积累下来的客户数据无法整合形成联动效应;且传统的客服系统仅具有客户数据管理功能,无法对数据进行分析。产品端和客户端的“束缚”使得各家银行局限于产品与客户的一对一销售,这样既无法通过交叉销售提升零售业务的规模效益,更无法满足客户多元化的理财需求。面对这一难题,光大银行决定用大数据理念打破“僵局”。据了解,AAP平台通过对海量、真实的客户信息进行分析,形成15类客户投资偏好;然后在产品端进行跨部门整合,创建了以客户需求为分类导向的产品库,再辅之以客户经理的微调建议,形成了基于客户个性化投资偏好的金融资产最优配置比例建议。目前,AAP平台不仅能够根据客户需求提供合理、个性化的资产配置建议,还能够对客户的持仓资产进行持续跟踪,根据宏观市场环境变化动态调整资产配置方案。光大银行零售业务负责人透露,随着客户投资理念的成熟,未来AAP平台将进一步向客户开放多个端口,包括手机端、iPad端应用等。另据了解,预计到年底,通过AAP平台达成的理财销售额将达到350亿元左右。
理财业务只是银行“大数据”应用的典型案例之一。在光大银行信息科技部总经理杨兵兵眼中,人本身就是一台可以综合运用大数据的“精密仪器”,而当今对于大数据的利用只不过才还原人脑50%的水平。随着对大数据综合运用能力不断提高,未来银行作为一台“精密仪器”也会变得越来越聪明。
他告诉记者,通过对客户数据的发掘和利用,可以发现业务需求、深度服务客户。如该行利用大数据社交媒体技术进行数据分析制作出的“云图”,为业务部门新拓展供应链或拓宽现有供应链网络,主动发现有价值客户提供了全面、准确的数据,同时也为银行根据客户特点订制个性化服务提供了依据。
据不完全统计,光大银行信息科技部门数据服务人员全年须完成人均近1000项业务部门提出的数据服务需求。面对海量业务需求,他们创新性地提出开放式数据服务社区理念,并建设成服务平台,利用“中文语义智能分析”技术,使得数据服务资源共享、知识共享成为可能。此举还曾荣获由中国人民银行颁发的科技发展二等奖,是大数据技术驱动优质服务的最佳实践。此外,通过在总、分行之间进行数据分析与服务的互动、培训,将数据运用能力有效传导至分行,两年内推动实现近350项数据分析业务营销活动,激发了分行业务发展活力。
2013年,光大银行还基于大数据Hadoop技术构建起核心历史数据查询平台,为客户提供联机历史数据查询应用功能,使以往需要3~4天的查询时长缩减到当日即可完成,从而大大提升了运营效率。据介绍,由于该平台采用开放式的大数据应用架构,在软、硬件科技成本投入上较传统技术架构应用节省近80%的费用,大幅降低了投入成本。这也是国内将Hadoop运用于银行在线运营业务的首个成功案例。
大数据时代,对大数据和互联网技术的应用能力,将成为激发商业银行创新的又一驱动力,在助力业务快速发展的同时,也将提升商业银行自身竞争力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09