 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
 京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		得大数据者得新工业革命先机
数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。
世界经济论坛第十届新领军者年会即夏季达沃斯论坛即将在天津举行,主题为“第四次工业革命——转型的力量”。届时,全球90多个国家和地区的超过1500位各界领军人物将集中探讨第四次工业革命对未来经济、社会、生态和文化的重要影响。今年1月下旬在瑞士小镇举行的达沃斯年会,主题也是“掌控第四次工业革命”,主要讨论第四次工业革命将如何改变人类生产、分配和消费模式,如何应对由此带来的挑战。世界顶级企业家与智库一年内两度探讨同一主题,在达沃斯论坛历史上还是首次。世界精英如此心仪新工业革命,盖因世界经济遇到了瓶颈,人们急切期望从新工业革命中找到突破口,找到人类可持续发展的钥匙。而要理解新工业革命,先得弄清大数据革命。
一般认为,大数据的数量级是在“太字节”即2的40次方以上,一般软件人员难以收集、存储、管理和分析的数据,而且这种认定还是相对的,随着科技进步,“大”的认定还会不断变化。但仅仅因为“大”而称之为大数据,风靡全球的大数据革命就没有太大意义了。在小数据时代,我们只能有选择性采集抽样数据、局部数据和片面数据,有时甚至在无法获得实证时纯粹靠经验、理论、假设和价值观去发现未知领域的规律。结果只能是对真实世界的抽象归纳与推理,这就不可避免包含了人的心理和主观因素。同时,由于样本的局部性,时间非全天候性,归纳推理中的主客观偏差,有时可能出现“蝴蝶效应”,差之毫厘,谬以千里。
大数据的真正意义在于:通过传感器,实现真实世界的全方位连接,得到全方位实时数据,交换、整合和云计算,逼近真实世界。
小数据追求“小”、“精”、“优”;大数据追求的是“多”、“杂”、“更优”。小数据时代,受科技水平的限制,只能依据随机样本,大数据则要求所有数据,在小数据时代只有5%的数据符合样本结构化要求,剩下的95%数据都被排斥在外了。大数据则良莠不拒,不求随机样本,而是全体数据;不求精确性,而是混杂性。小数据探求因果关系,即知道“为什么”,以便归纳推理和预测;而大数据只知道相关关系,不必知道因果关系,只要知道“是什么”不必知道“为什么”。小数据追求精确、完美,往往导致不精确、不完美;大数据不求精确、不求完美,反而导致了观测客观世界的更精确、更完美。如2009年谷歌通过大数据分析准确地得出什么地方发现了H1N1禽流感,而且判断非常及时,比美国疾控中心的判断结论要早一两周。美国安大略理工学院卡罗琳·麦格雷戈博士利用软件预测早产儿的病情,不仅比专业医生及时,而且一些病状,医生不能发现,而计算机能发现。这些人都没有医疗方面的专业背景。这样的例子在大数据时代还有很多。正如“大数据时代的预言家”,牛津大学教授维多克·迈尔-舍恩伯格所言:“在不久的将来,世界许多依靠人类判断力的领域都会被计算机系统所改变甚至取代。”这看似是一个矛盾的命题,其实是一个方法论上的革命,即“大数据革命”。
明代著名思想家洪应明说过:“文章极处无奇巧,人品极处只本然。”一个人写文章写到登峰造极的境界时,其实并没有什么写作艺术可言,只是把内心的真实感受真实地表现出来,让读者从内心产生共鸣。一个人的品德修养达到炉火纯青的境界时,就能“随心所欲不逾矩”,让人回归到纯真朴实的本然之性而已。大数据革命与此异曲同工:“工业革命无奇巧,数据大时只本然”。数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。
大数据“多”、“快”“好”“省”的优点奠定了新工业革命的基石。“数据多”,随着科技水平的进一步发展,大数据将无限逼近真实世界。“速度快”,全天候随时实现信息交换,没有时滞。“效果好”,大数据增加了人类的“观测”能力。美国麻省理工学院布伦乔尔森将大数据称之为人类社会行为观测的“显微镜”,就像望远镜让我们能洞察遥远的星河,显微镜让我们观察微小的细胞一样,大数据将帮助我们完成在通常的眼光下无法完成的工作。
新工业革命,本质上是智能革命,而智能革命的基础是信息化,大数据是根本。没有大数据对客观事物全面、快速、真实、准确的信息反馈,任何智能设备都不可能实现真正的智能。因此,西方学者将即将来临的新工业革命也称之“后信息时代的革命”,归根到底,这是“大数据的革命”。以至于知名信息专家涂子沛说:“数据可以治国,也可以强国”,“得数据者得天下”。借用涂子沛的这句话,我们还可以说:“数据可以治业,数据可以兴业,得大数据者将占据新工业革命之先机!”
	
 
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23