京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据技术预防股市大幅波动
前一时期,决策层强力全线救市:28家已获IPO批文公司暂缓后续发行,21家券商出资1200亿元投资蓝筹股ETF,25家公募,高管积极申购本公司偏股型基金。国家护盘的背后,是为了守住金融安全底线以此维护国家安全。对于股市剧烈波动,是否可以提早介入布局进行预防?大数据技术应该是最佳途径。
一带一路、亚投行、结构性经济改革,都需要稳定健康的金融。国家护盘的背后,是经济安全与国家安全的辩证关系。正如7月4日,人民日报官微所说:券商增资,新股IPO暂缓,系列政策的目标只有一个:稳定市场!守住金融安全底线,才有资本市场的健康发展,新常态下的改革红利才会化作实实在在的获得感。
此轮强力全线救市,国家在各个层面都付出了巨大的成本。资金层面拿出了大量的真金白银,政策层面在一定程度上牺牲了自由市场。这个成本补救措施固然重要,但倘若仅靠补救措施来稳定市场,不论是现实成本还是未来成本,都非常之高。如果我们能够从前期,从预防角度来应对股市剧烈波动,那么我们稳定市场的付出将会大大减少。
股市剧烈波动的导火索一定是由一些特定关系的账户的交易引发,进而带动受影响的股票发生被抛售的行为,最终触发某些特定交易机制走向负反馈,带动整个系统发生崩盘。那么,预防股灾的最佳措施就是及时发现和预警这些特定关系账户的非正常交易行为,并对其实时恰当的干预。怎么才能及时发现和预警这些特定关系账户呢?
我国沪深两市股票账户总数超过2亿,日成交额平均达到1万亿元,最高曾到1.8万亿元。在这样海量的数据中找寻账户间的特殊关系,只能利用大数据技术。
大数据技术专门为处理海量、多元、异构的数据而生,可以通过机器进行高维学习进而发现靠人无法发现的规律。但即使利用当下最先进的大数据技术,要在股票交易这样的海量数据中找到特殊关系账户,每天产生的交易数据可能需要几十天的时间来进行处理。按这个运算效率,即使能够发现特殊关系账户,等到发现的时候,这些特殊交易已经引爆股灾了,无法达到预防的目的。那么,提高运算效率,就是通过特殊账户交易发现股灾导火索的关键。而提高运算效率的办法,就是缩小账户匹配范围,通过多种社会网络关系来缩小范围。
金融交易本质是点对点的交易。点与点的关系本质上是一种社会网络的关系。社会网络的关系有很多种,个人社会网络关系包括家庭网络关系、同事网络关系、朋友网络关系、同学网络关系等等,公司网络关系包括投资网络关系、高管网络关系、交易网络关系、供应链网络关系等等,金融网络关系包括资金流动网络关系、担保网络关系、有价证券转让网络关系等等。
据了解,中国互联网金融创新研究院的科学家们已经在做这方面的努力。科学家们曾利用数联铭品的“浩格云信”大数据关联图谱技术,做过这样的演算:
例如在调查某上市公司股票异常交易时,叠加了这家上市公司、上市公司关联方、主要客户及供应商、各公司高管、高管家庭关系网、高管社会关系网等社会网络信息,将交易监控账户从2亿多股票账户缩小到12万户左右。在这个账户量基础上,结合当下最顶尖的大数据团队,开发出了交易实时监控和预警功能,使得这些账户的异常交易信息可以在1秒钟内进行弹出预警,可及时发现股价异常波动的原因。
简单说,通过大数据关联图谱技术,叠加多种社会关系网络,在多个维度找寻和匹配潜在的特殊账户关系,大幅度提高运算效率,及时高效地发现关联账户,使得预防股灾成为可能。利用大数据关联图谱技术,建立金融防火墙,主动侦测金融风险,是可以为“货币战争”赢得时间和战机的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09