京公网安备 11010802034615号
经营许可证编号:京B2-20210330
运用大数据技术预防股市大幅波动
前一时期,决策层强力全线救市:28家已获IPO批文公司暂缓后续发行,21家券商出资1200亿元投资蓝筹股ETF,25家公募,高管积极申购本公司偏股型基金。国家护盘的背后,是为了守住金融安全底线以此维护国家安全。对于股市剧烈波动,是否可以提早介入布局进行预防?大数据技术应该是最佳途径。
一带一路、亚投行、结构性经济改革,都需要稳定健康的金融。国家护盘的背后,是经济安全与国家安全的辩证关系。正如7月4日,人民日报官微所说:券商增资,新股IPO暂缓,系列政策的目标只有一个:稳定市场!守住金融安全底线,才有资本市场的健康发展,新常态下的改革红利才会化作实实在在的获得感。
此轮强力全线救市,国家在各个层面都付出了巨大的成本。资金层面拿出了大量的真金白银,政策层面在一定程度上牺牲了自由市场。这个成本补救措施固然重要,但倘若仅靠补救措施来稳定市场,不论是现实成本还是未来成本,都非常之高。如果我们能够从前期,从预防角度来应对股市剧烈波动,那么我们稳定市场的付出将会大大减少。
股市剧烈波动的导火索一定是由一些特定关系的账户的交易引发,进而带动受影响的股票发生被抛售的行为,最终触发某些特定交易机制走向负反馈,带动整个系统发生崩盘。那么,预防股灾的最佳措施就是及时发现和预警这些特定关系账户的非正常交易行为,并对其实时恰当的干预。怎么才能及时发现和预警这些特定关系账户呢?
我国沪深两市股票账户总数超过2亿,日成交额平均达到1万亿元,最高曾到1.8万亿元。在这样海量的数据中找寻账户间的特殊关系,只能利用大数据技术。
大数据技术专门为处理海量、多元、异构的数据而生,可以通过机器进行高维学习进而发现靠人无法发现的规律。但即使利用当下最先进的大数据技术,要在股票交易这样的海量数据中找到特殊关系账户,每天产生的交易数据可能需要几十天的时间来进行处理。按这个运算效率,即使能够发现特殊关系账户,等到发现的时候,这些特殊交易已经引爆股灾了,无法达到预防的目的。那么,提高运算效率,就是通过特殊账户交易发现股灾导火索的关键。而提高运算效率的办法,就是缩小账户匹配范围,通过多种社会网络关系来缩小范围。
金融交易本质是点对点的交易。点与点的关系本质上是一种社会网络的关系。社会网络的关系有很多种,个人社会网络关系包括家庭网络关系、同事网络关系、朋友网络关系、同学网络关系等等,公司网络关系包括投资网络关系、高管网络关系、交易网络关系、供应链网络关系等等,金融网络关系包括资金流动网络关系、担保网络关系、有价证券转让网络关系等等。
据了解,中国互联网金融创新研究院的科学家们已经在做这方面的努力。科学家们曾利用数联铭品的“浩格云信”大数据关联图谱技术,做过这样的演算:
例如在调查某上市公司股票异常交易时,叠加了这家上市公司、上市公司关联方、主要客户及供应商、各公司高管、高管家庭关系网、高管社会关系网等社会网络信息,将交易监控账户从2亿多股票账户缩小到12万户左右。在这个账户量基础上,结合当下最顶尖的大数据团队,开发出了交易实时监控和预警功能,使得这些账户的异常交易信息可以在1秒钟内进行弹出预警,可及时发现股价异常波动的原因。
简单说,通过大数据关联图谱技术,叠加多种社会关系网络,在多个维度找寻和匹配潜在的特殊账户关系,大幅度提高运算效率,及时高效地发现关联账户,使得预防股灾成为可能。利用大数据关联图谱技术,建立金融防火墙,主动侦测金融风险,是可以为“货币战争”赢得时间和战机的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27