
运用大数据技术预防股市大幅波动
前一时期,决策层强力全线救市:28家已获IPO批文公司暂缓后续发行,21家券商出资1200亿元投资蓝筹股ETF,25家公募,高管积极申购本公司偏股型基金。国家护盘的背后,是为了守住金融安全底线以此维护国家安全。对于股市剧烈波动,是否可以提早介入布局进行预防?大数据技术应该是最佳途径。
一带一路、亚投行、结构性经济改革,都需要稳定健康的金融。国家护盘的背后,是经济安全与国家安全的辩证关系。正如7月4日,人民日报官微所说:券商增资,新股IPO暂缓,系列政策的目标只有一个:稳定市场!守住金融安全底线,才有资本市场的健康发展,新常态下的改革红利才会化作实实在在的获得感。
此轮强力全线救市,国家在各个层面都付出了巨大的成本。资金层面拿出了大量的真金白银,政策层面在一定程度上牺牲了自由市场。这个成本补救措施固然重要,但倘若仅靠补救措施来稳定市场,不论是现实成本还是未来成本,都非常之高。如果我们能够从前期,从预防角度来应对股市剧烈波动,那么我们稳定市场的付出将会大大减少。
股市剧烈波动的导火索一定是由一些特定关系的账户的交易引发,进而带动受影响的股票发生被抛售的行为,最终触发某些特定交易机制走向负反馈,带动整个系统发生崩盘。那么,预防股灾的最佳措施就是及时发现和预警这些特定关系账户的非正常交易行为,并对其实时恰当的干预。怎么才能及时发现和预警这些特定关系账户呢?
我国沪深两市股票账户总数超过2亿,日成交额平均达到1万亿元,最高曾到1.8万亿元。在这样海量的数据中找寻账户间的特殊关系,只能利用大数据技术。
大数据技术专门为处理海量、多元、异构的数据而生,可以通过机器进行高维学习进而发现靠人无法发现的规律。但即使利用当下最先进的大数据技术,要在股票交易这样的海量数据中找到特殊关系账户,每天产生的交易数据可能需要几十天的时间来进行处理。按这个运算效率,即使能够发现特殊关系账户,等到发现的时候,这些特殊交易已经引爆股灾了,无法达到预防的目的。那么,提高运算效率,就是通过特殊账户交易发现股灾导火索的关键。而提高运算效率的办法,就是缩小账户匹配范围,通过多种社会网络关系来缩小范围。
金融交易本质是点对点的交易。点与点的关系本质上是一种社会网络的关系。社会网络的关系有很多种,个人社会网络关系包括家庭网络关系、同事网络关系、朋友网络关系、同学网络关系等等,公司网络关系包括投资网络关系、高管网络关系、交易网络关系、供应链网络关系等等,金融网络关系包括资金流动网络关系、担保网络关系、有价证券转让网络关系等等。
据了解,中国互联网金融创新研究院的科学家们已经在做这方面的努力。科学家们曾利用数联铭品的“浩格云信”大数据关联图谱技术,做过这样的演算:
例如在调查某上市公司股票异常交易时,叠加了这家上市公司、上市公司关联方、主要客户及供应商、各公司高管、高管家庭关系网、高管社会关系网等社会网络信息,将交易监控账户从2亿多股票账户缩小到12万户左右。在这个账户量基础上,结合当下最顶尖的大数据团队,开发出了交易实时监控和预警功能,使得这些账户的异常交易信息可以在1秒钟内进行弹出预警,可及时发现股价异常波动的原因。
简单说,通过大数据关联图谱技术,叠加多种社会关系网络,在多个维度找寻和匹配潜在的特殊账户关系,大幅度提高运算效率,及时高效地发现关联账户,使得预防股灾成为可能。利用大数据关联图谱技术,建立金融防火墙,主动侦测金融风险,是可以为“货币战争”赢得时间和战机的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10