
2016年大屏生态运营大数据蓝皮书
大屏蓝皮书大数据显示,作为家庭互联网设备的核心,2015年OTT终端(包括智能电视及盒子)保有量达到1.65亿台。预计到2020年,OTT终端保有量将突破4亿台,超七成的中国家庭使用OTT端收看节目。
规模创造流量,流量成就价值。2013年,中国移动智能终端覆盖率为43%,促成移动互联网市场爆发。大屏蓝皮书预测的OTT端市场发展曲线,与移动互联网市场曲线有着惊人的相似。四年之后的2017年,OTT端家庭覆盖率预计将达到45%,非常有希望接过移动互联网这一棒,创造新一轮互联网神话。预计至2020年,OTT端市场规模将达到6300亿元,万亿市场蛋糕并不遥远,让我们拭目以待。
—内容为王,引大屏洪荒之力
相较于PC/移动端使用场景的碎片化,目前OTT端聚焦家庭互动场景。在重拾美好、回归家庭的社会趋势下,互动、开放的大屏平台帮助家庭留住人们的身影,成为开启全新家庭生活的一把金钥匙。
任何平台,离开内容,都是空中楼阁,所以说大屏把用户吸引回来的核心优势,也是内容。OTT端具有海量优质资源和独特资源,其中2016年上半年TOP30优质资源OTT端覆盖率已经高达87%。一方面把互联网人群吸引到电视机前,另一方面,电视机前的传统用户有了更多选择机会。海量、新鲜和独特资源的快速上线,让观众体验到与观看传统电视完全不一样的畅快感。
—亿量用户,星星之火开始燎原
从尝试到接受,OTT端发展经历了漫长的过程。在创新体验和丰富优质内容的双重吸引下,电视受众正在从传统电视向OTT终端转移。
大屏蓝皮书数据显示,2016年6月OTT月活跃终端覆盖用户2.36亿,日活跃终端覆盖用户1.53亿。目前移动互联网市场规模6000多亿元,移动网民6.2亿,人均贡献约1000元/年。按此推算,OTT端的市场规模将达2300亿,但实际远未达到。可以说,OTT市场是一个尚待开发的高价值蓝海市场。
过去半年,OTT点播行为变得越来越活跃,已经显著超越传统直播收视行为,完全实现逆转。从具体月份看,应该有一定节日规律,如春节期间,大家更多还是关注直播行为,平常月份点播行为更突出。
大屏蓝皮书数据显示,互联网电视单一终端日均开机时长达到5.04小时,高于传统电视终端开机时长的4.18小时(CMS统计数据)。这说明,互联网电视观看时间更长,受众粘性更高。一部分原本在PC和移动端的行为回归客厅,转移到互联网电视大屏上来。
同时,在互联网电视终端,用户收看时长的配比向互联网点播行为倾斜。数据显示,单一终端点播行为花费时长2.77小时,比传统直播行为时长高出0.5小时。互联网点播行为抢占了用户在电视终端的时间,形成了用户时间争抢拉锯战。
让我们来看一组传统电视直播频道与点播应用的具体表现对比。OTT端的三大视频应用日活终端覆盖达到1765万台,与传统电视直播频道相比看似旗鼓相当,但单一频道或应用的日均收看时长方面却差之千里。TOP3视频应用在单一OTT端点播日均3.2小时,远高于三大传统直播电视频道的1.2小时。这恰恰说明,传统直播电视频道因频繁换台,导致停留时间短,而OTT点播端则具有更强的用户粘性和吸粉持久力。
—面向未来,创大屏营销新价值
2015年,传统电视仅广告市场规模就超过千亿元,而OTT端市场规模尚不及其二十分之一。同为电视大屏,其市场营销价值差距竟如此之大,值得深入思考。增强OTT端的影响力,扩大对品牌的营销价值,成为行业共同的目标和责任。
OTT互联网市场已经初具流量基础,并随终端规模扩大而不断增强。OTT端的“传统直播+网络点播”双重特性,不仅增强了电视受众的使用体验,更能实时获取用户画像特征和使用偏好。所以,OTT端的营销方式不再只是卖流量,卖广告,更能够精准定位特定受众群体,将产品和服务与受众喜好的内容相结合,直接引导营销并产生销售成果。OTT端将演变成一个巨大的内容和产品服务平台,成为品牌与家庭沟通并提供商业服务的重要桥梁。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29