
近期,许多大企业信息技术部总管表示,聘用资优数据人才非常困难。而美国高等学府每年培养的数据人才也只有区区千人,每个毕业生就有四家公司提供聘书。
《华尔街日报》11月11日报导说,“大数据”(Big Data)时代来临,公司急需的数据家不仅需要拥有工程知识和商业能力,还需对数据有敏锐的感觉,这样他们才能胜任分析和处理“大数据”公司提供的各项数据和信息。
与此同时,高等学府也正在努力提供同时涉及多个领域的课程,希望能籍此培养出更多的数据专才。这些课程鼓励学生拓宽思路,启发他们利用科技和商业工具,从而成为合格的数据家。
不过,对于大学院校来说,要培养出同时在数学、计算机和商科等数个领域内具有很强能力的学生实属不易。美国第一批提供数据学课程的大学之一、北卡州立大学高等分析学院(Institute for Advanced Analytics at North Carolina State University)创始人拉帕(Michael Rappa)表示,传统大学的结构并不利于跨科目的教育方式。
麦肯锡全球机构(McKinsey Global Institute)顾问Michael Chui在上周戴尔公司举办的一项客户活动中发言表示,到2018年,将会出现14万至18万个数据家空缺。对于信息技术长官们,这样的情况自然不能接受。他们需要数据家来解开深藏在公司数据中的商业信息和价值。
在SunTrust Banks Inc银行任职信息主管的薛立言(Anil Cheriyan)表示,数据家的职位由两人担任。一位数据能力强的工作人员先以深度的商业知识和经验将数据进行归类、整合和管理。然后,另一位致力分析的工作人员采用数据模型和数据挖掘的方式来对客户分类,或研究有关产品、风险等方面的课题。薛立言认为,要找到一个人有能力同时涉足这两大领域非常困难。不过他相信,随着这个领域的发展和成熟,这样的全面型人才逐渐会出现。该行已经开始将数据处理和分析这两个领域的工作人员一起培训了。
美国密西西比大学医疗中心(The University of Mississippi Medical Center)信息主管周大卫(David Chou)表示,他们聘用了不少可以分析数据的研究员,但是他们不懂如何将这些分析用来实质改善对病人的照看料理。“他们不具备这方面的能力。”
北卡州立大学高等分析学院的创始人拉帕表示,要想具备这些能力,关键是采用跨部门的学习和培训。在他们的学院,学生必须花整整十个月,一周五天,朝九晚五,主修应用数学、统计、计算机、金融和市场学。其中许多课目是一个数据家应当暸解的内容。学院会提供给学生来自政府的真实、但隐去真名实姓的数据,让他们分析并解决经营方面的具体问题。自2007年建立以来,该校已有340名毕业生,还有85名将在2015年毕业。平均每个毕业生获得四家公司的聘书。
《华尔街日报》引述拉帕说,美国大约有70家高等学府教授类似的分析课程,其中包括西北大学(Northwestern University)、纽约大学(New York University)和哥伦比亚大学(Columbia University),每年大约产生1000名数据家,完全不能满足市场需求。
尽管企业和大学都在努力培养数据人才,但是也有专家认为数据分析还是需要依赖软件,没有必要花费大力气培养这么多的专业人士,企业不用如此“小题大做”。
拉帕先生不赞同这样的说法。他认为,计算机可以处理比较简单的工作,但是数据家们必须在使用和分析数据时保持创新的态度,才能应对经营方面不断出现的新挑战。
互联网、社交网站、电子商务等新一代技术的广泛应用催生了“大数据”。“大数据”(Big Data)指巨量数据的集合。大数据具有多样化和海量的特点,而且无法用常规软件工具分析。西方企业开始认识到,善用“大数据”将成为提高核心竞争力的关键。卡内基梅隆大学(Carnegie-Mellon University)海因兹学院(Heinz College)院长克里希南教授(Ramayya Krishnan)说,“大数据”具有催生社会变革的能量。但是释放这样能量,需要严谨的数据家、富有洞见的数据分析和激发管理创新的环境。(文章来源:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28