京公网安备 11010802034615号
经营许可证编号:京B2-20210330
什么是坏数据,它有何副作用
1.很多机构难以获得准确的数据来支撑他们的日常决策。原因就是坏数据。坏数据也称脏数据,是指错误的、具有误导性的、格式非法的信息。
2.但凡任何一间数据仓库,势必存在着某种形式的坏数据。完全避免坏数据的产生几乎是不可能的,但数据管理可以很好地帮你保持数据的干净。
信息和数据是一家机构最具战略意义的资产。数据仓库研究所(The Data Warehousing Institute)报告称:“智力资本和专业知识是比实体设施和设备更加重要的资产。”利用商业数据作出有效决策至关重要。
什么是坏数据?
制定数据策略不再是什么新鲜概念。然而,很多机构难以获得准确的数据来支撑他们的日常决策。原因就是坏数据。坏数据也称脏数据,是指错误的、具有误导性的、格式非法的信息。不幸的是,没有哪个行业、机构和部门可以免于坏数据的危害。如果未能及早发现和纠正,坏数据将可能导致严重后果。
坏数据的产生来源?
坏数据的产生原因?
起初,数据质量仅限于客户关系管理(CRM)系统,而今其复杂程度则已延伸到了结构化客户数据以外的范畴。想要提升数据质量,你必须深入探究,了解导致坏数据的确切原因:
·数据丢失:本应包含数据却未填写的空白栏。
·数据错误或不准确:信息没有被正确输入或者没有得到正常维护。
·数据不对应:数据被错误地输入到了其他栏中。
·数据格式不符:数据没有依照记录系统需要进行标准化处理。
·数据重复:同一账户、联系人、销售线索等在数据库中记录了不止一次。
·数据输入失误:字词、名称或格式方面的拼写错误、打字错误、顺序错误和歧义。
坏数据对数据仓库的影响?
“财富1000强企业因数据质量问题导致运营效率低下而蒙受的损失,将超过他们在数据仓库和客户关系管理(CRM)项目上的投入。”
——高德纳咨询公司(Gartner)
脏数据会严重破坏整个营收周期。各机构急切地想要填充销售漏斗,坏数据则趁机悄悄溜进我们的营销自动化系统和客户关系管理系统,带来各种影响,小至交易层级的损失,大到灾难性的后果。让我们来看看坏数据都会造成哪些影响:
·资源消耗增加
·维护成本升高
·产品/邮件投送出现差池
·客户满意度和留存率下降
·客户流失率升高
·活动成功标准失真
·营销自动化项目失败
·销售和分销渠道不尽人意
·垃圾邮件数量和退订人次增多
·社交媒体上出现负面评论
·决策依据错误或不足
·报告无效
·生产率下降
·营收流失
人们或许仍会回应目标定位失准的消息,但却根本无法回应他们收不到的消息。
——需求挖掘专家戴维·拉布(David Raab)
如何避免数据变坏或失效?
但凡任何一间数据仓库,势必存在着某种形式的坏数据。完全避免坏数据的产生几乎是不可能的,但数据管理可以很好地帮你保持数据的干净。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12