京公网安备 11010802034615号
经营许可证编号:京B2-20210330
鸟瞰大数据
认识生命周期服务编排技术,大数据[注]不仅只是供营销人使用,更关乎电信的成本质量和服务速度!
“大数据”因为可以帮助营销人员提高活动效率、帮助医生作出诊断、打击欺诈、检测黑客攻击,甚至预测金融市场而赢得赞誉,这也是理所当然的。
虽然大多数人的注意力一直集中在消费应用上,但大数据分析和技术也可以应用到电信和运营商网络上。本文我们将讨论生命周期服务编排技术如何被用于降低运营商网络的运营成本、提高所交付服务的质量,并使得新的网络服务能够更快速的供给。
首先,让我们回顾一下网络上的大数据来自何方。根据网络架构和它是如何装置的,原始数据可以在一个非常精细的水平被提取,例如个别数据包的来源和目的地、所走的路线和穿越路径所经过的时间。在一个较高的水平,数据可以包括客户、服务、信息类型,以及每个链路(如城域光纤链路、蜂窝数据和企业局域网)连接的性质。不是每个实时数据都可用于所有路由和链路,但信息越多,网络显现出的画面就越真实,包括其容量和利用率,以及其网络服务的性能。
这些数据可以用来做什么呢?
它可以从通过了解网络本身开始,包括网络的物理拓扑结构以及在它上面运行的服务。尽管多年来网络管理工具已经能够发现和映射网络的静态拓扑,但要有能力真正地了解服务则是更为棘手的。这一部分是因为它需要分析所有的原始数据,另一部分是因为服务信息模型是实时不断变化的,当用户更改自己在做什么时、IP地址改变他们的边缘接入点(想想移动用户)时、负载平衡器适应动态需求时,以及网络路由被更新以提高性能时,服务信息模型就变更了。
这就是现代的大数据分析技术可以进来效劳之处,首先,需要弄清楚来自无数操作系统的原始数据,及网络本身的意义,以打造网络的实时、真实的服务信息模型。这个关键步骤需要机器学习技术,来确定网络元素是如何互连的,以及服务在该基础设施上是如何被交付的。其次,基于实时从网络接收来的测量值,精确的最新服务信息模型然后形成了精细的预测分析基础。这样可以帮助运营商了解他们网络性能降低的地方、了解哪些资源过度使用,以及未来流量问题可能发生的地方,以便可以制定计划扩建或重新分配资源。
为了使大数据分析的结果方便使用,先进的图形用户界面(GUI)是必需的。网络运营团队就可以在玻璃窗格上查看以下的精确表现:他们的网络和服务、他们的网络基础设施如何在使用、以及产能、利用率和性能分析。完成完整的周期后,生命周期服务编排软件会自动化需采取的行动,以保持服务质量到达尽可能高的水平。
换句话说,大数据和预测分析相结合,使大型运营商网络更有弹性。随着大型网络扩展至数以百万计的网络路径和每天TB级的网络测量值,只有大数据技术可以提供积极主动的指导,这些指导是运营商需要用来预测和满足未来客户需求的。
因为有许多大数据分析和机器学习领域能有益于生命周期服务编排,让我们回到上面列出的三点:降低运营商网络的运营成本、提高所交付服务的质量和使得新的网络服务能够更快速的供给。当处理物理网络的功能以及虚拟网络的功能时,这三点都成立。
降低运营成本:可以通过在问题发生之前就将问题避免掉而降低运营成本。只要网络运营团队与分层在物理拓扑上的服务信息模型提供了关于性能、容量和利用率的有用信息,这些信息能够允许更积极主动的资源分配,不仅有可能减少紧急的上门服务,同时也允许更便宜(或更有效的)资源分配。
提高服务质量:大数据分析服务信息模型理解的不仅是路线,而且也理解服务的性质。例如,知道VoIP或视频服务必须保持在特定的参数范围内,大数据的算法可以确定何时及何处问题可能发生。然后可以采取积极主动的措施,以确保质量得到满足,从而满足或超过客户对该流量的要求。
更快速的服务供给:在大规模、负荷的运营商网络上,要添加或升级站点间的连接这样的服务请求事件时,可能很难确定容量是否已经存在(+微信关注网络世界),或是否需要对网络升级以适应新的客户需求。此外,部署步骤可能要费力地用人工作业。由于生命周期服务编排使用大数据,新的客户服务可以在一天之内实施 – 而不需数周。
鉴于今天服务提供商网络的巨大范围、规模和复杂性,包含IP VPN、MPLS、运营商级以太网、以太网SONET和移动技术等等,生命周期服务编排正在成为网络敏捷性的关键推动者。运营商必须能够快速响应客户的需求和不断变化的网络利用率。被大数据分析增强的生命周期服务编排,将是使运营商能够成为越来越具有竞争性和响应力的“秘密武器”。市场正在快速增长,而新技术如SDN[注]和NFV[注]也产生甚至更多的网络大数据。能够了解实时的网络,并且能够实时的回应,是至关重要的。
像CENX的Cortx服务编排器这类工具,对网络运营商展示了大数据分析和机器学习的好处,帮助削减运营成本,改善服务交付,并驱动新服务的快速部署。通过使用实时数据来建立和维护服务信息模型,然后将预测分析和在该模型上基于GUI的搜索功能分层,使服务提供商首次能真正了解整个网络,以及该网络将走向何方。
在许多方面,网络运营商幕后使用大数据的方式类似于我们从零售商、从医疗界、科学家和金融行业听说的大数据应用。大数据分析连接了数以百万计,或数十亿计的信息微小位元以得出结论、做出预测、解决问题、创造机会,并改善客户服务。过去它在美国航空航天局,后来它在华尔街,现在它在网络中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12