
商业成功的数据化五步曲
在现在这个变幻莫测的世界里,大家越来越喜欢给一个事物加个后缀—“什么什么化”。比如之前的“游戏化”,以及最近流行起来的“数据化”。数据化其实是将一个通常的商业流程转变成以数据为驱动指标的过程。整个过程大概包括了数据的收集、数据的归集与存储、数据的分析与重新建立关系--并最终发现新的商业机会。数据化相对来说是一个较新的现象,代表了数字与现实的交互。
数据化这个词如果运用到我们工作生活中能代表很多含义,而且它们应该比我们想象的还要深刻。所以,理解如何将商业过程“数据化”是非常重要的。同时,它也能让你更好的为即将到来的“数据驱动型社会”做好充足的准备。
数据化与物联网
最明显的关于数据化的例子就是代表了自我量化以及可穿戴趋势的AppleWatch。用户可以通过AppleWatch生成关于用户自身的大量数据并加以分析,也可以同其它的数据相关联从而启发出更多与个人生活息息相关的见解。
对于公司组织来说,数据化过程是从收集数据开始的--从各方数据源获取的大量数据。物联网将许多产品及装备联系在一起,为搜集各种数据提供了可能性。我们可以想象下平时人们怎样在办公室间流动(人力分析),司机是怎么开车的(交通分析),或者不同的产品的使用情况是什么样子的(产品行为分析)。
根据最近的Ericsson的数据化报告,一共有四个方面的数据化实例:
1. 个人数据化:包括客户是怎样通过智能手机上的应用程序产生个人信息数据,个人风险指数的评定以及个人信用评级等等;
2. 商业流程的大数据分析化意味着精简和提升现有的商务流程:这个可以用来重新配置现有的供应链系统或者是金融业务流程。比如说,小额支付的迅猛增长能够提供更多购买习惯的信息,从而对金融行业产生极大的影响。
3. 城市的数据化:智能城市是一个代表—城市里布满了各种智能传感器用来收集数据,从而提升城市的整体管理流程效率,比如垃圾回收、公交系统等。
4. 私人生活的数据化能够向我们展示人们平时是怎么生活的。例如,他们什么时候会打开热水器,多久洗一次衣服,喝多少咖啡等。所有这些都是从一点一滴的数据中收集出来的。
数据化五步法
综上所述,怎样做数据化呢?下面我们提供的五个步骤让你加速处理你的业务数据化流程:
1. 让你的办公场所、产品以及你的整个组织变得智能化。这意味着你能通过传感器和物联网来收集数据。记住一定要连续并且广泛地收集数据,不管是从办公室也好还是人或者设备也好。这些数据可以为后面打下很好的铺垫。
2. 取样数据放回原环境测试以确保数据质量。因为数据的质量和准确度是数据化中极其重要的一环。
3. 消除你系统中的数据孤岛。数据往往以“数据竖井”的方式分散地存放在不同的部门和个人手中。当把数据集中起来以后,比如以数据池的方式,就会将不同的数据之间建立联系,消除数据中互相孤立的情况。
4. 重新审视你的组织和业务。组织的数据化为你展开了一系列新的可能,所以你应该跳出原有的束缚,在新的架构下重新找寻新的机会。
5. 以“概念验证”为开端更好地理解大数据给你的公司组织带来的许多可能性。开始数据化过程是一点一滴来的,没办法一蹴而就。
当你正式开始做数据化的时候你就会发现,它远不只是一个技术的挑战那么容易。数据化过程涉及到整个组织的每个方面,包括商业流程,战略流程,数据监管,公司文化等。所有这些方面在做数据化时都应该被考虑到,而这并不是一个简单的任务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10