
如何妙用“小数据”
营销的最高成就是与客户建立一对一的联系——为每个独立买家或潜在客户提供最相关的信息和产品——而大数据则很难帮你实现这样的私人沟通。企业需要有能力收集和利用每个客户的个人喜好和行为。换句话说,他们同样需要“小数据”。
“小数据”被定义为客户的特定信息, 如客户的购买历史和其他被企业CRM系统定期收集的信息,以及客户的偏好和行为的信息,这可以从客户日常使用的技术产品中获得,比如他使用智能手机还是其他可穿戴科技设备来网站访问,社交媒体动态。
从事小数据使用与分析研究的企业信息管理公司Open Text产品营销与创新副总裁Allen Boned指出:大数据从数不清的人或电脑系统中获取数据,试图创造某一年龄组或某一特定人群的专属模型;而小数据是与某一个人直接相关的个性化数据,帮助营销人员理解个人的微妙行为与需求,并针对这些需求,实时奉上个性化的营销信息或产品。
小数据还包括从带有传感器的设备上收集的设备数据,与设备环境和设备使用带来的本地化信息。换句话说,小数据是连续的、实时的物联网输出。“小数据从本质上讲是物联网的操作系统,”Allen Boned说,“你有很多相互连接的设备,每一个都有很多本地信息,在某些情况下,就是相对简单的信息。”这意味着小数据对于日常的市场营销工作来说更易于操作,他说。
关键是要清楚如何将大数据采集自目标受众的洞见与通过小数据分析获得的设备特定信息有效结合,全面了解目标受众的情况。下面是一些需要重点考虑的因素:
1. 定义你的目标。小数据可以让营销人员细致的观察现有和潜在的客户,不仅了解他们正在做什么,而且了解他们为什么这样做以及他们怎样做到的。 “一种理解是客户轮廓构建,” Bonde说。 “我们如何创造更完整的客户形象 ?当你开始回答这个问题,它会触及更大的问题,这就是,在哪里找到合适的小数据使用?”
数据管理和分析公司Prosper Technologies的CEO,Gary Drenik补充说:“这需要企业有能力整合不同的数据源,加以分析,以应对你面临的问题……小数据是一项选择相关的数据并加以分析的工作,你可以利用其来运作你的业务,推出或调整市场活动。优质的小数据出乎人们的医疗,”他说,“人很难搞清楚自己想要什么,所以营销人员愿意做调研,并在此基础上做假设。小数据的作用是针对个人的,帮助企业更好的了解个人。营销人员真要回答的问题不是‘这是什么?’而应该是‘为什么会有这样的结果?’以及‘我们能否改变他们?’”
2. 利用你已经拥有的信息。“小数据的世界就是利用你周围现成的数据,” Bonde说。“举例来说,使用销售终端的数据或你的网站点击量……这意味着采用普通人能够理解的度量标准和工具, 而非只有数据科学家和统计学家才能理解。这也是小型企业一贯的做法。”小企业客户群比较小, 所以他们能更好挖掘个人客户的需求和喜好, 甚至可以通过非正式的方式更好服务每一个客户, 比方说你常去的煎饼果子摊老板可能会为你多加一个蛋一样。
专家指出,只要企业能搭建一个紧凑的小数据分析战略,它们就可以从获取的客户具体洞见中受益。例如,“我有很多客户希望真正了解其在数字营销领域的努力是否有所回报,”内容营销分析公司 Content Science的首席执行官Colleen Jones(她多年来一直致力于用小数据帮助企业打造战略型内容营销活动)表示,“与大数据相比, 小数据更容易获取,汇报给营销人员和以及其内容营销团队, 方便他们理解和采取行动”, 因为小数据收集是有选择的从客户标准报告与社交媒体监测中收集到的。
3. 由小到大的顺序解决问题。Bonde指出,对于还不知道如何驾驭大数据的营销人员来说,小数据的易获取性和易用性是绝好的消息。“银行、政府和大公司将继续投资大数据,但很多人会意识到他们已经拥有的手边数据的价值,并使其形象化,可操作化。那头大数据还没结婚呢,这厢小数据已经生二胎了,效益快慢高下立判。”他说, “如果你还没有开始在大数据领域投资,又担心落后的话,小数据是个很好的选择。因为你可以通过专注于手边小数据的分析,获得价值和有益的启示。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11