京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据挖不到的,是情怀
某购票平台日前发布了一个名为“大数据时代的电影消费洞察”的报告。不仅有常见的观影习惯、观影人群的统计,还发布了更大的野心,比如将利用购票数据对电影拍摄和宣传发行提出建议,有助于选择更卖座更有票房潜力的电影题材。
这是个顺理成章的野心。看电影不像买水果,你可以先看后买,甚至先尝后买。看电影就像一次小小的猜谜或者冒险,好看还是难看,喜欢还是厌烦,盖头揭开之后才会知道。此前你看到的宣传,无一例外的是王婆卖瓜自卖自夸,谁见过批评自己的广告?其实,卖家也悬着一颗心呢,上一部大卖下一部冷场的遭遇并不是个案,片商们前赴后继地交学费还是找不到一劳永逸的秘诀。
大数据的优越感此时显露无遗。观众喜欢小清新还是重口味、哪个明星更有票房号召力、哪些题材有话题性、哪些炒作效果好、可能的票房是多少,进行数据分析就可以得到答案。然后,精准地投其所好、按需生产,自然容易产销对路,投资风险也会随之降低。有点像打牌,虽然不能清楚地看见对手的每一张牌,但掌握了对手的偏好和习惯,胜算就大得多了。
大数据真是个靠谱的好东西。可惜,它碰到的是电影这个不怎么靠谱的特殊品。电影生产的,不是实实在在的水果,而是一个银幕上的梦。观众买到的,是很快就会化作回忆的几个小时的体验。给观众一个什么样的梦,就是业界良心了。此时,大数据就没那么神勇了。
电影产业链的每个环节都需要数据支持,这已经是个不争的事实。大众喜闻乐见,当然是个好理由,却不能视为唯一的标准。一味看重市场强调票房,就容易用大数据分析市场逻辑取代艺术思维,导致天平的失衡。底层的努力奋斗哪有上层的浮华时尚来得好看,缜密深沉的剧情哪有简单狗血来得痛快?没有了艺术思维,最吸引人的恐怕就是直接的感官刺激了。大众此时此地的喜好,多半是即食性的消费行为,选择观众最习惯最好消化的喂食,这样的影片除了提供酸爽的快感,几乎没有任何营养可言。比如拍摄速度奇快票房奇高的《小时代》和《何以笙箫默》,乍看起来很是养眼,似乎也无辜无害,粉丝和明星之间一个愿打一个愿挨,搞不好还是两厢情愿皆大欢喜,关你啥事?如果粉丝们都甘之如饴地接受在物质奢华面前走形的友谊、爱情,如果观众们都把苍白矫情的粗制滥造当做格调和情趣,那就真该问一下业界良心在哪里了。这些伴随着粉丝成长的电影,会影响着一代人的价值观和文化品位。作为电影中的一个类型,它们有存在的理由,却不该是市场的垄断者。在它们之外,还有更广阔更深沉的生活,如果因为主流观影人群的陌生或排斥而不能进入影院,就是不小的遗憾了。
能够传诸后世被奉为经典的东西,往往是大数据的挖掘机难以抵达的角度和深度。大数据会推出《泰囧》、《心花路放》,但不会对《一九四二》感兴趣,更不可能青睐《归来》的故事。一个《小时代》大行其道的时代,不会是电影的大时代。
一个时代的电影,总带着一个时代的清晰烙印,也必然带着一个民族的文化气息。电影从来不单纯是个娱乐产品,它还给人们以启迪和教育。电影的教育意义,在电影的故事和情节中,更在故事和情节背后的人文关怀中。在电影背后是怎样的一双眼睛,是进步的还是保守的?用怎样的价值观去看待当前的时代和远去的历史,用怎样的视角去观察和表现不同阶层的人群,都会通过观影经历潜移默化地传达给观众。这种细腻微妙的文化情怀,这种主创人员创造出的独特风格,这种经由火候和经验文火炖出来的分寸感,是佳片的必备因素,却是大数据无能为力的。在呼唤人文情怀、盼望精品力作的今天,即使暂时没有精品批量出现,至少也该旗帜鲜明地亮出精品思维和精品追求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27