京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优化政策,促进大数据产业健康发展
大数据产业是指建立在互联网、物联网等渠道的大量数据资源基础上的数据存储、价值提炼、智能处理的信息服务业。该产业近年成为新的技术制高点和经济增长的新动力。
专家学者和业内人士认为,我国大数据产业目前呈现良好发展态势,但面临一些困难,需优化产业政策,促其健康发展。
态势良好
北京大学教授杨学山等人士认为,相较于发达国家,我国大数据产业还处于探索起步阶段,但在对大数据的社会认知、政策环境、市场规模、产业支撑能力等方面取得了积极进展,为大数据产业可持续发展创造了良好条件。
大数据产业发展政策日益完善。大数据产业是云计算技术、物联网、移动互联网广泛普及的结果。鉴于大数据对经济、社会、科研、国家安全等方面的巨大价值,我国各级政府制定政策推动大数据产业发展。2015年8月,国务院印发《促进大数据发展行动纲要》,标志着大数据产业已被提升为国家战略高度。
大数据产业发展平台逐渐建立。随着国家和地方政府大数据产业发展政策的制定和实施,大数据产业发展的相关平台逐步建立。全国各地已建成和在建的大数据产业园已达100多个。为推动大数据研究,学术界成立了大数据专家委员会等机构,举办了大数据共享与开发、大数据技术创新、大数据运用、大数据产业发展等主题的学术研讨会。
市场空间持续扩大。大数据产业主要涉及数据的收集、存储、分析和运用等环节,其在金融、电子商务、电信、医疗、农业、军事、政务等领域发挥着越来越重要的作用。虽然我国大数据产业还处在起步阶段,但已彰显出巨大的市场空间和持续增长的态势。
面临困难
中国工程院院士孙家广等专家认为,大数据产业发展具有极强的技术和信息依赖性,由于我国大数据产业起步滞后以及基础条件不够成熟,其在快速发展的同时,面临的困难日益显现:
信息壁垒降低了大数据产业资源配置效率。大数据产业发展必须实现数据信息的自由流动和共享,如果数据不开放、不共享,数据整合就不能实现,数据价值也会大大降低。然而,这一问题并没有得到相关部门的足够重视。这主要是由于地方政府没有形成与大数据产业发展相适应的全局思维。此外,政府部门是社会信息的主要控制者,其信息又分别被不同部门和区域控制,而不同部门和区域数据标准各异,信息资源也就难以实现共享。
数据安全管理薄弱增加了大数据产业发展的风险。我国目前面对的现实是保护大数据安全能力不足、大数据安全法律法规缺失、网络信息管理体制存在缺陷等,这些问题增加了大数据产业发展的风险。
产业生态体系短板阻碍大数据产业链和产业集群的形成。我国大数据产业虽已覆盖多个领域,但仍处于起步阶段,主要体现为:各领域大数据企业分散现象普遍;产业发展、政策、平台、创新、环境等不协调……
优化政策
中国科学院院士、北京理工大学副校长梅宏认为,为克服困难,促进我国大数据产业健康发展,相关的产业政策应优化:
完善大数据产业发展战略规划,优化产业布局。应优化对大数据产业的战略规划,明确方向和重点,制定长、中、短期发展目标,完善投融资、税收、知识产权、利益分配等的政策,为大数据产业创造良好的发展环境。
依托大众创新创业优化大数据产业发展环境。大众创新创业有利于增强创新驱动活力、拓宽创业渠道、优化创新环境、促进中小企业发展、优化产业结构等,这是解决大数据发展创新技术受限、企业竞争不充分等问题的有效途径,所以应充分利用好大众创新创业,优化大数据产业发展的环境。
加强大数据共享平台和安全保障体系建设。在数据共享方面,应尽快制定和出台《公共信息资源开发共享管理办法》,以法律形式规定公共信息资源开放共享的内容、程序、标准等,并在此基础上建立公共信息资源共享网站,形成共享服务体系;在数据安全方面,应完善国家数据安全法律法规。同时加强网络安全基础设施建设,提高对抗网络攻击、加密、入侵检测等技术的水平,建立和完善大数据安全应急机制。
实施融合发展战略,构建大数据产业生态体系。这里的融合发展既包括大数据与其他产业的融合,也包括大数据企业与政府、社会组织的融合。构建大数据产业与其他产业发展的联动机制,组建全国性、区域性的大数据产业联盟,加强大数据产业链各个环节企业的合作就显得尤为重要。大数据产业发展需要同时发挥好政府、企业、社会中介等多方面的力量,聚集各方优势。企业应在产业发展过程中充当主体地位,政府应根据企业的需求,提供政策和服务。中介组织也不容忽视,政府部门应加强对大数据行业协会、科研机构、产业联盟等组织的培育和扶持,充分发挥它们在理论研究、技术研发、社会调研等方面的作用,使之成为推动大数据产业发展的另一支重要力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12