京公网安备 11010802034615号
经营许可证编号:京B2-20210330
优化政策,促进大数据产业健康发展
大数据产业是指建立在互联网、物联网等渠道的大量数据资源基础上的数据存储、价值提炼、智能处理的信息服务业。该产业近年成为新的技术制高点和经济增长的新动力。
专家学者和业内人士认为,我国大数据产业目前呈现良好发展态势,但面临一些困难,需优化产业政策,促其健康发展。
态势良好
北京大学教授杨学山等人士认为,相较于发达国家,我国大数据产业还处于探索起步阶段,但在对大数据的社会认知、政策环境、市场规模、产业支撑能力等方面取得了积极进展,为大数据产业可持续发展创造了良好条件。
大数据产业发展政策日益完善。大数据产业是云计算技术、物联网、移动互联网广泛普及的结果。鉴于大数据对经济、社会、科研、国家安全等方面的巨大价值,我国各级政府制定政策推动大数据产业发展。2015年8月,国务院印发《促进大数据发展行动纲要》,标志着大数据产业已被提升为国家战略高度。
大数据产业发展平台逐渐建立。随着国家和地方政府大数据产业发展政策的制定和实施,大数据产业发展的相关平台逐步建立。全国各地已建成和在建的大数据产业园已达100多个。为推动大数据研究,学术界成立了大数据专家委员会等机构,举办了大数据共享与开发、大数据技术创新、大数据运用、大数据产业发展等主题的学术研讨会。
市场空间持续扩大。大数据产业主要涉及数据的收集、存储、分析和运用等环节,其在金融、电子商务、电信、医疗、农业、军事、政务等领域发挥着越来越重要的作用。虽然我国大数据产业还处在起步阶段,但已彰显出巨大的市场空间和持续增长的态势。
面临困难
中国工程院院士孙家广等专家认为,大数据产业发展具有极强的技术和信息依赖性,由于我国大数据产业起步滞后以及基础条件不够成熟,其在快速发展的同时,面临的困难日益显现:
信息壁垒降低了大数据产业资源配置效率。大数据产业发展必须实现数据信息的自由流动和共享,如果数据不开放、不共享,数据整合就不能实现,数据价值也会大大降低。然而,这一问题并没有得到相关部门的足够重视。这主要是由于地方政府没有形成与大数据产业发展相适应的全局思维。此外,政府部门是社会信息的主要控制者,其信息又分别被不同部门和区域控制,而不同部门和区域数据标准各异,信息资源也就难以实现共享。
数据安全管理薄弱增加了大数据产业发展的风险。我国目前面对的现实是保护大数据安全能力不足、大数据安全法律法规缺失、网络信息管理体制存在缺陷等,这些问题增加了大数据产业发展的风险。
产业生态体系短板阻碍大数据产业链和产业集群的形成。我国大数据产业虽已覆盖多个领域,但仍处于起步阶段,主要体现为:各领域大数据企业分散现象普遍;产业发展、政策、平台、创新、环境等不协调……
优化政策
中国科学院院士、北京理工大学副校长梅宏认为,为克服困难,促进我国大数据产业健康发展,相关的产业政策应优化:
完善大数据产业发展战略规划,优化产业布局。应优化对大数据产业的战略规划,明确方向和重点,制定长、中、短期发展目标,完善投融资、税收、知识产权、利益分配等的政策,为大数据产业创造良好的发展环境。
依托大众创新创业优化大数据产业发展环境。大众创新创业有利于增强创新驱动活力、拓宽创业渠道、优化创新环境、促进中小企业发展、优化产业结构等,这是解决大数据发展创新技术受限、企业竞争不充分等问题的有效途径,所以应充分利用好大众创新创业,优化大数据产业发展的环境。
加强大数据共享平台和安全保障体系建设。在数据共享方面,应尽快制定和出台《公共信息资源开发共享管理办法》,以法律形式规定公共信息资源开放共享的内容、程序、标准等,并在此基础上建立公共信息资源共享网站,形成共享服务体系;在数据安全方面,应完善国家数据安全法律法规。同时加强网络安全基础设施建设,提高对抗网络攻击、加密、入侵检测等技术的水平,建立和完善大数据安全应急机制。
实施融合发展战略,构建大数据产业生态体系。这里的融合发展既包括大数据与其他产业的融合,也包括大数据企业与政府、社会组织的融合。构建大数据产业与其他产业发展的联动机制,组建全国性、区域性的大数据产业联盟,加强大数据产业链各个环节企业的合作就显得尤为重要。大数据产业发展需要同时发挥好政府、企业、社会中介等多方面的力量,聚集各方优势。企业应在产业发展过程中充当主体地位,政府应根据企业的需求,提供政策和服务。中介组织也不容忽视,政府部门应加强对大数据行业协会、科研机构、产业联盟等组织的培育和扶持,充分发挥它们在理论研究、技术研发、社会调研等方面的作用,使之成为推动大数据产业发展的另一支重要力量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27