京公网安备 11010802034615号
经营许可证编号:京B2-20210330
建行大数据风控筑网络欺诈防护墙
随着互联网业务的快速发展,金融科技创新为我们的生活带来了诸多便利,电子银行交易、网络购物支付不断普及。然而随着网络诈骗呈日渐高发态势,种类繁多,诈骗团伙分工明确,形成一条龙的产业链诈骗模式。不法分子大肆运用钓鱼网站、伪基站、木马植入等诈骗手段,通过积分兑换、淘宝退款、微信二维码、QQ?红包等工具,精心编造各种骗局,引诱客户上当受骗。伴随信息泄露的常态化和诈骗手法的日新月异,在线支付等网络欺诈风险已成为当前风险高发地。
在严峻的外部欺诈形势下,建行通过大数据智能化风控模型,打造“防、控、补”一体的电子银行全流程反欺诈体系,从事前、事中和事后主动加强网络金融风险管理,有效控制了外部欺诈风险,为网络金融用户的资金安全保驾护航。
事前防范——客户安全教育与反钓鱼成效显着
2011年开始,建行即利用网站、微博等平台进行客户安全教育宣传,增强客户对欺诈行为的识别能力。2015年,为塑造专业专注的服务形象,专门打造了建行反欺诈卫士卡通形象“蓝e卫士”,并在微信、微博、网站等互联网渠道,以“蓝e卫士”为主题对信息泄露、伪基站等当前典型高发的风险进行多轮次宣传教育,从如何识别钓鱼网站、保护好自己的个人信息和密码信息等角度进行专题宣传。同时在行内定期进行风险提示和预警,通过网点和短信等渠道开展客户安全教育和警示。通过一系列安全宣传活动,有效提升客户风险防范意识和技能。
针对不法分子通过钓鱼网站,窃取受害人输入的个人敏感信息,进而假冒受害者进行欺诈性金融交易获得经济利益的欺诈手段。2011年开始建行组建专门的反钓鱼队伍,开启24小时不间断的钓鱼网站主动搜索排查机制,不断分析钓鱼网页规律,做到查防结合,积极应对多样化、域名种类复杂化的钓鱼形势。2016年,建行自主创新开发的 “反钓鱼监测系统和方法”获得国家知识产权局授予发明专利,通过提升钓鱼网站监测系统的智能化水平,加大对高危、重点钓鱼网站侦测频率,钓鱼网站处理数量和效率不断提升。此外,建行与中国互联网应急管理中心、公安机关、腾讯、360安全中心等外部机构建立数据共享机制,鼓励行内行外积极举报钓鱼网站,并及时报送相关部门进行关停,努力为用户提供安全的网络支付环境。
事中监控——建立大数据智能风控
2011年11月,建行在国内率先建立网络金融反欺诈平台,依托全行统一、跨渠道的网络金融反欺诈系统,实现网上银行、手机银行、网上支付等电子渠道交易的7*24小时全面风险监控,对高风险交易实时阻断后进行人工分析、外呼核实、加黑名单等处理。一方面通过研究典型欺诈案例特征,并结合客户历史交易行为习惯,部署相应的控制策略和措施,并动态调整;另一方面通过位置服务、终端识别等新技术应用,持续优化提高监控策略的有效性,将高命中率的监控模型应用系统智能化自动防控。
通过充分利用现代化的信息技术和大数据分析,依托基于用户行为分析的风险引擎,实时快速分析网络金融渠道客户交易行为细节,建立电子化、流程化、规范化的管理方式,对海量的数据进行比对、甄选,主动识别异常行为,采集异常行为数据,进行实时分析判断,挖掘欺诈团伙作案特征和规律,根据风险形势变化,实时动态部署智能化监控策略,扩大风控覆盖范围和拦截半径,实现精准识别高风险网络金融交易,有效保障客户资金安全。
事后补偿——维护客户权益
通过借鉴国外先进银行经验,建行研究建立了网络金融风险快速追赔机制。对于客户遵守网络金融客户服务协议,已尽到一定安全和保管义务,但由于其被第三方非法入侵、盗用等原因导致直接经济损失的,采取积极应对措施,帮助客户挽回损失。与此同时,建行积极推进联防联控生态圈建设,加强与第三方商户联动,通过资源互换及风险形势共享,共同实现行业上下游风险联防。
2016年,为进一步丰富与商户风控合作的模式和内容,拓展商户合作新领域,丰富防控维度,建行创新研发第三方合作支付商户风险评级模型,采取针对性的一户一策差异化合作策略,依据商户风险评级模型的结果,结合商户自身风控完善程度及防控能力,对商户划分不同的合作等级,制定分类的合作方案,并将先进经验在合作商户之间交流,共享风险信息、联防联控。此外,总行、分行、网点共同参与打造建行、合作商户、公安机关等单位在内的联防联控合作机制,力求构建一个以银行为核心的应对互联网欺诈犯罪的防护生态圈。
建行集事前防范、事中监控、事后补偿三位一体的全面网络金融反欺诈风险管理体系,在保障客户资金安全方面的创新做法取得的良好成效,是建行服务民生、履行企业社会责任的有益实践,受到客户、媒体和社会各方面的广泛关注。建行将在人民银行、公安部门等大力支持下,主动与金融同业合作,积极加强企业级反欺诈防控能力建设,持续提升应对网络欺诈风险的能力,为保障客户权益,营造良好的金融生态发挥更大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05