
从内部实践讲起 联想也谈大数据
继云计算在各行各业相继落地后,大数据与我们的关系也在日益密切。在笔者过往进行的客户采访中,有不少用户都表示当下正在进行一些大数据相关的工作,包括对各个业务平台的打通,数据共享、收集以及分析等,这也意味着大数据正在从“阳春白雪”走向“下里巴人”。
在近日召开的2015中国国际大数据大会上,包括移动、联通、电信及联想等在内的运营商及IT企业均分享了其在大数据领域的探索和布局。从它们身上能看到相同的是,几乎所有企业都意识到了大数据所蕴含的价值;不同的是,各企业在挖掘其价值的过程中,所处的阶段不尽相同,比如有的已经处于利用所挖掘的数据价值来提升业务的阶段,而有的还处于建模型、处理、分析数据的阶段。
大数据落地指日可待
而这可以说也是当前大数据发展现状的一个缩影,联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹会后在接受采访时表示,从兴起到今天,大数据的发展经历了所有新技术落地的各种必要过程,包括从概念认知、日渐接受,到今日的逐渐落地。这其中,大数据的价值归根结底在于帮助企业提升商业价值,这点已经毋庸置疑。
黄莹举了联想自身的例子来说明。他说,两年前,在联想内部推广大数据的时候,还要跟业务主管介绍大数据是干什么用的。但是从去年开始,各业务部门已经开始从一些小的应用着手进行尝试,到今年,大家对大数据已经完全没有怀疑,包括联想各个业务部门都有大数据方面的项目在进行。
这其实十分类似于人们接受一个新鲜事物的过程,开始不了解,有怀疑、质疑,逐渐了解后,进行尝试,当获得、或看到好处时则会大力推广。现在大数据所处的发展阶段就已经属于后者,用户不再追问大数据是什么,而是问我们怎么利用大数据。
具体来说,联想作为一个典型的制造企业,生产的产品有成百上千种,如何做到以客户为中心,其中很重要的一条就是聆听客户需求,及时改进,这也是联想内部做大数据研究的一个主要因素,即帮助其更好地改进产品。当然,一开始的进展也没有那么顺利,据黄莹介绍,最开始推广大数据的时候,也只有几个产品经理在用,不过随着时间的推进,越来越多的产品经理意识到了价值所在,到现在该大数据平台已经有成百上千个产品经理在使用。
对此,联想集团研究院大数据总监郭炜也表示,事实证明,现在大数据已经过了喊口号、炒概念的阶段,其现在与前沿的技术创新和实际应用的结合是非常快的,以前一个东西变成产品可能需要几年,现在一旦技术完备,真正应用到企业也就是几个月的时间。
利用大数据,最关键的是什么?
要分析这个首先还是要看看大数据都涉及哪些技术层面,粗略地概括,大致主要包括三个阶段:数据收集、收据分析和数据呈现。毫无疑问,这其中首先要解决的就是数据来源问题,然后才有分析、呈现、利用。以联想自身为例,一方面其将内部的数据孤岛打通,形成数据共享平台,另一方面利用爬虫技术去搜集互联网上关于联想的各种意见、建议,也就是说企业内部数据和外部来自用户的评论共同构成了数据源。
接下来要做到就是分析、呈现,有关这部分其实不用多讲,每天都有各种新的技术出现,这也不是难题。无论是黄莹还是之前的客户采访,但凡被问到这类问题,他们给出的答案都是一致的,那就是解决了数据来源问题,其他都好办,可见大数据、大数据,说到底首先得有数据。其次,才是分析、利用。
虽然在采访中,两位发言人都更多提及的是大数据在联想内部的实践,但截止当前,联想已经把这套实践经验总结、提炼,形成了面向用户的最终解决方案,在2015中国国际大数据大会的现场,联想也进行了展出。
都说实践才出真知,联想的亲身体验想必也能为用户带去价值,帮助用户少走弯路。更多关于联想大数据相关的解决方案,这里不详细展开,有兴趣的朋友可自行去查阅、咨询。总之,大数据所蕴藏的价值毋庸置疑,但在发掘、利用大数据价值的道路上,还是有很多沟沟坎坎要迈过的,找一个有实践经验的供应商,想必不是坏事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30