
从内部实践讲起 联想也谈大数据
继云计算在各行各业相继落地后,大数据与我们的关系也在日益密切。在笔者过往进行的客户采访中,有不少用户都表示当下正在进行一些大数据相关的工作,包括对各个业务平台的打通,数据共享、收集以及分析等,这也意味着大数据正在从“阳春白雪”走向“下里巴人”。
在近日召开的2015中国国际大数据大会上,包括移动、联通、电信及联想等在内的运营商及IT企业均分享了其在大数据领域的探索和布局。从它们身上能看到相同的是,几乎所有企业都意识到了大数据所蕴含的价值;不同的是,各企业在挖掘其价值的过程中,所处的阶段不尽相同,比如有的已经处于利用所挖掘的数据价值来提升业务的阶段,而有的还处于建模型、处理、分析数据的阶段。
大数据落地指日可待
而这可以说也是当前大数据发展现状的一个缩影,联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹会后在接受采访时表示,从兴起到今天,大数据的发展经历了所有新技术落地的各种必要过程,包括从概念认知、日渐接受,到今日的逐渐落地。这其中,大数据的价值归根结底在于帮助企业提升商业价值,这点已经毋庸置疑。
黄莹举了联想自身的例子来说明。他说,两年前,在联想内部推广大数据的时候,还要跟业务主管介绍大数据是干什么用的。但是从去年开始,各业务部门已经开始从一些小的应用着手进行尝试,到今年,大家对大数据已经完全没有怀疑,包括联想各个业务部门都有大数据方面的项目在进行。
这其实十分类似于人们接受一个新鲜事物的过程,开始不了解,有怀疑、质疑,逐渐了解后,进行尝试,当获得、或看到好处时则会大力推广。现在大数据所处的发展阶段就已经属于后者,用户不再追问大数据是什么,而是问我们怎么利用大数据。
具体来说,联想作为一个典型的制造企业,生产的产品有成百上千种,如何做到以客户为中心,其中很重要的一条就是聆听客户需求,及时改进,这也是联想内部做大数据研究的一个主要因素,即帮助其更好地改进产品。当然,一开始的进展也没有那么顺利,据黄莹介绍,最开始推广大数据的时候,也只有几个产品经理在用,不过随着时间的推进,越来越多的产品经理意识到了价值所在,到现在该大数据平台已经有成百上千个产品经理在使用。
对此,联想集团研究院大数据总监郭炜也表示,事实证明,现在大数据已经过了喊口号、炒概念的阶段,其现在与前沿的技术创新和实际应用的结合是非常快的,以前一个东西变成产品可能需要几年,现在一旦技术完备,真正应用到企业也就是几个月的时间。
利用大数据,最关键的是什么?
要分析这个首先还是要看看大数据都涉及哪些技术层面,粗略地概括,大致主要包括三个阶段:数据收集、收据分析和数据呈现。毫无疑问,这其中首先要解决的就是数据来源问题,然后才有分析、呈现、利用。以联想自身为例,一方面其将内部的数据孤岛打通,形成数据共享平台,另一方面利用爬虫技术去搜集互联网上关于联想的各种意见、建议,也就是说企业内部数据和外部来自用户的评论共同构成了数据源。
接下来要做到就是分析、呈现,有关这部分其实不用多讲,每天都有各种新的技术出现,这也不是难题。无论是黄莹还是之前的客户采访,但凡被问到这类问题,他们给出的答案都是一致的,那就是解决了数据来源问题,其他都好办,可见大数据、大数据,说到底首先得有数据。其次,才是分析、利用。
虽然在采访中,两位发言人都更多提及的是大数据在联想内部的实践,但截止当前,联想已经把这套实践经验总结、提炼,形成了面向用户的最终解决方案,在2015中国国际大数据大会的现场,联想也进行了展出。
都说实践才出真知,联想的亲身体验想必也能为用户带去价值,帮助用户少走弯路。更多关于联想大数据相关的解决方案,这里不详细展开,有兴趣的朋友可自行去查阅、咨询。总之,大数据所蕴藏的价值毋庸置疑,但在发掘、利用大数据价值的道路上,还是有很多沟沟坎坎要迈过的,找一个有实践经验的供应商,想必不是坏事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07