京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据成互联网保险新利器 安全管理水平待提升
保险公司正通过借助人脸识别等科技条件为展业提供方便,对于应用大数据“改革”业务模式非常看重,但业内人士认为,虽然大数据有利于互联网保险发展,但行业大数据分析开展得相对较差,技术应用方面存在不均衡现象。目前,支撑互联网金融的大数据、云计算等新技术发展还不成熟,安全机制尚不完善,安全管理水平有待提升。
互联网技术革新付诸实践
保险公司正在借助技术为投保人提供更加便利的风险保障服务体验。弘康人寿发布的2016年互联网保险服务标准中,在保全环节引入人脸识别技术,通过后台比对身份证照片和公安部下的身份证认证中心照片智能比对,代替了人工认证。
弘康人寿相关负责人表示,人脸识别技术已经比较成熟,银行、券商等金融领域都有广泛应用,人脸识别服务可以看作是全自助服务中的优化创新,也是将更多的半自助和人工保全服务变为智能自助服务的解决方案。未来,弘康人寿预期将人脸识别应用到更加复杂的服务中,比如传统服务中需要派遣人工做生存调查的生存金领取等保全项目。
人保财险副总裁王和认为,大数据时代的到来,使得保险大规模、多样性、实时、潜在数据的获得及快速分析成为可能,保险价值主张将发生根本性变革。保险全面渗透到客户日常风险管理已成为可能,未来作为传统保险经营的核心环节,承保只是保险的前端和客户的触点界面,真正的核心价值体现在后端的专业化风险解决方案。
保险业权威机构通过对国内保险公司的调研发现,中国保险企业对于应用大数据“改革”业务模式都非常看重,而且也有不少企业已开展相关实践,且大多数未开展的险企也表示计划在3年内开展相关应用。在被调研的保险公司中,63%的车险经营公司已开展车联网应用,16%已开展平台生态圈实践。
华夏保险董事长李飞在“2016中国互联网保险大会”上提出,“互联网+”时代的保险业发展的两大趋势:一是互联网技术应用将大幅提高保险公司经营效率,降低管理成本,提升客户体验效果;二是互联网技术的发展,将带来客户消费行为和习惯的改变,推动商业保险模式的改变,催生行业的创新。
需提升技术应用能力
前述行业权威机构对中外保险机构开展调查研究发现,互联网技术对保险业的影响按深入程度可分为两类:一类是对传统保险价值链的升级再造,称之为“大数据改良”;另一方面是对传统产业边界的突破,称之为“大数据改革”。“改良”提升了保险业的服务能力、盈利水平和企业价值,而“改革”则有可能彻底改变人们对于保险业的固有印象。其中,大数据对传统保险价值链的改造与升级,主要体现在风险评估定价、交叉销售、客户关系管理、理赔欺诈检测、理赔预防和缓解等五个环节。
保监会原副主席魏迎宁表示,保险业开展大数据分析,可以发现不同群体的保险需求,有针对性地开发保险产品,减少风险的不确定性,精准定价。有了大数据分析,以前不可保的风险可以变成可保风险。同时,保险业也有条件进行大数据分析,因为保险业务的信息化和数据的集中管理使保险公司获取了大量的数据,再加上外部数据,数据规模十分庞大,但现在保险业大数据分析开展得相对较差。
数据也透露出行业在技术应用方面的不均衡。中国保险业在大数据应用方面的现状调查统计结果表明,保险公司对大数据应用于“改良”的现状中,最积极推进的为风险建模,占比达63%;其次为风险评估与定价、新客户获取、活动管理,占比均大于40%;在其它方面的应用占比尚较低,特别是索赔预防缓解方面,仅有11%的保险公司正在开展。分析人士认为,过去保险企业IT 技术的应用,侧重于通过数字技术拓展销售渠道,重点提升网销、电销及移动展业能力。未来,互联网技术将颠覆性地变革保险公司的基本商业模式。
复星保险集团执行总经理高立智认为,互联网保险防范风险的重点在销售误导和信息安全,全面、充分地信息披露和风险提示尤为重要。目前,支撑互联网金融的大数据、云计算等新技术发展还不成熟,安全机制尚不完善,安全管理水平有待提升。互联网保险的业务数据和客户个人信息全部电子化,信息安全若得不到有效保障,将有可能酿成业务数据和客户信息灭失、泄露的重大风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27