京公网安备 11010802034615号
经营许可证编号:京B2-20210330
联想要做“互联网+大数据”实践者
在服务器、HPC、云计算等企业级业务已经取得巨大进展的联想,又将目光投向了大数据。
提及联想,我们首先想到的可能会是其传统的PC、平板、手机等业务,以及近年来逐渐发力的企业级业务,对于大数据,联想还是一名市场新兵。
实际上,联想在大数据上已经有了数年的耕耘,是一名大数据的实践者。据联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹介绍,联想内部已经在IT管理、产品反馈、门店管理等多个领域应用了大数据技术,并计划将成熟的方案推向市场。
“互联网+大数据”更具价值
《大数据时代》中写道:“如今,数据已经成为了一种商业资本,一项重要的经济投入,可以创造新的经济利益。事实上,一旦思维转变过来,数据就能被巧妙地用来激发新产品和新型服务。”
没错,数据是当今企业最为宝贵的财富,故而“大数据”成为当前最热门的话题,大数据及分析被视为企业变革、获得更强竞争力的有效手段。
不过,就像历史上的很多新生事物都会经历过质疑和争论,在对“大数据”的认知上也存在着一些误区。很多时候我们认为BI就是大数据、“数据仓库+Hadoop”就代表着大数据,然而并非如此。
联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹指出,大数据技术的价值在于能快速且基于事实的支持决策而产生巨大的商业价值。相比传统的BI,大数据的数据来源要更加广泛,不仅包括CRM、ERP、网店交易或会计账簿等传统企业数据,也包括网页日志、智能电表、制造传感器、设备日志、交易系统数据等机器或传感器数据,同时还包括具有时代特色社交媒体数据,如客户评论、微博和社交平台等。
“互联网与传统企业结合单一的企业数据仓库或者单一的互联网大数据平台无法满足企业发展需要,结合企业传统数据与物联网、自然语言等技术,互联网+大数据平台应运而生”,黄莹表示。
联想集团研究院大数据总监郭炜补充说,“数据仓库+Hadoop”并不等于大数据,“在网上的数据”才是真正的“互联网+大数据”:“现在设备采集的数据、互联网对话的数据,甚至是跟用户交互的点击流和线下的行为轨迹流,都是要纳入企业数据平台的。企业在设计大数据平台的时候,一定要考虑将用户交互的数据都纳入到企业的大数据平台上。”
如今,联想所从事的就是“互联网+大数据”平台的建设。据黄莹介绍,其中包括与传统企业系统对接,通过“爬虫”技术获取社交大数据来倾听客户体验,跟踪企业最新动态、加盟开源社区,基于大数据特殊应用需求定制软硬件解决方案等多个层面。
郭炜表示,从数据获取、再到存储、处理、展现、加工、挖掘,再形成用户画像,联想内部在使用着一整套的解决方案。
做“互联网+大数据”实践者
联想虽然是一名大数据领域的新兵,但对大数据有着清晰的认知,并且在内部已经开始了大数据实践。
例如,联想在互联网“爬虫”技术上有着多年的积累,并通过模拟用户行为、转换Cookie等技术来增强“爬虫”的能力。通过“爬虫”,联想能够将合作的电商平台,如京东、亚马逊、淘宝上有关联想产品的数据“爬”下来,第一时间获得用户的反馈信息、并能够将这些数据快速反馈给产品经理。
“通过对大数据进行分析、比较集中的用户信息反馈,比如电脑、笔记本跟屏幕相关的,或者是一些零部件的信息,怎么样把电脑设计得更加符合用户的使用习惯。比如有的用户是打游戏,我们就会在这个方面进行加强,在做产品定位的时候可以更加确切。这样的案例有很多,对联想产品更贴近用户产生了很大的价值”,黄莹表示,“互联网+大数据”让联想能够“聆听客户声音”,对联想改进产品有着重要意义。
在IT资源管理方面联想也应用了大数据技术。据黄莹介绍,联想大数据部门和IT部门一起协作,采集分布在世界各地数据中心的网络数据,然后分析产生价值:“如果将某一个应用布到某一个数据中心,它可能会对已有应用产生影响。我们可以通过大数据分析模拟,计算出对现在的带宽产生什么样的影响,可以对分析决策产生帮助。”
再如,联想有很多门店,过去都是用人工进行管理,这样导致的效果是低效的,决策者看不到真正发生了什么事情。如今联想建立了门店管理的大数据解决方案,联想内部的相关业务部门先跟门店进行合作,积累了比较好的经验以后再变成类似的方案,也可以分享给其他的合作方。
如今,联想的大数据方案已经初现雏形,据黄莹介绍,从爬虫技术、自然语言处理、底层大数据处理工具的平台化设计,比如Hadoop、Spark、数据清洗,以及一些数据可视化的工作,联想或者已经在实验室平台上实现,或者已经被联想业务部门应用起来。同时,定价、营销、供应链的分析等大数据方案也已经投入业务部门使用。
“在内部实施比较成功的大数据方案,联想计划将其包装成其他企业能够应用的方案付诸商用”,黄莹表示。
——从服务器、云计算、HPC,再到如今的大数据,联想在企业级市场逐渐发力。从联想大数据的应用实践、以及对大数据整体解决方案的构建不难看出,联想企业级解决方案提供商的角色已经更加鲜明。
在大数据领域,联想的优势在于有着齐全的终端设备,有着大量收集数据的渠道;具有丰富的软硬件,以及广泛的合作伙伴,具有构建大数据整体解决方案的良好基础;同时联想进行了大量的内部大数据实践,本身就是大数据的受益者,这为构建大数据方案提供了经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07