
联想要做“互联网+大数据”实践者
在服务器、HPC、云计算等企业级业务已经取得巨大进展的联想,又将目光投向了大数据。
提及联想,我们首先想到的可能会是其传统的PC、平板、手机等业务,以及近年来逐渐发力的企业级业务,对于大数据,联想还是一名市场新兵。
实际上,联想在大数据上已经有了数年的耕耘,是一名大数据的实践者。据联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹介绍,联想内部已经在IT管理、产品反馈、门店管理等多个领域应用了大数据技术,并计划将成熟的方案推向市场。
“互联网+大数据”更具价值
《大数据时代》中写道:“如今,数据已经成为了一种商业资本,一项重要的经济投入,可以创造新的经济利益。事实上,一旦思维转变过来,数据就能被巧妙地用来激发新产品和新型服务。”
没错,数据是当今企业最为宝贵的财富,故而“大数据”成为当前最热门的话题,大数据及分析被视为企业变革、获得更强竞争力的有效手段。
不过,就像历史上的很多新生事物都会经历过质疑和争论,在对“大数据”的认知上也存在着一些误区。很多时候我们认为BI就是大数据、“数据仓库+Hadoop”就代表着大数据,然而并非如此。
联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹指出,大数据技术的价值在于能快速且基于事实的支持决策而产生巨大的商业价值。相比传统的BI,大数据的数据来源要更加广泛,不仅包括CRM、ERP、网店交易或会计账簿等传统企业数据,也包括网页日志、智能电表、制造传感器、设备日志、交易系统数据等机器或传感器数据,同时还包括具有时代特色社交媒体数据,如客户评论、微博和社交平台等。
“互联网与传统企业结合单一的企业数据仓库或者单一的互联网大数据平台无法满足企业发展需要,结合企业传统数据与物联网、自然语言等技术,互联网+大数据平台应运而生”,黄莹表示。
联想集团研究院大数据总监郭炜补充说,“数据仓库+Hadoop”并不等于大数据,“在网上的数据”才是真正的“互联网+大数据”:“现在设备采集的数据、互联网对话的数据,甚至是跟用户交互的点击流和线下的行为轨迹流,都是要纳入企业数据平台的。企业在设计大数据平台的时候,一定要考虑将用户交互的数据都纳入到企业的大数据平台上。”
如今,联想所从事的就是“互联网+大数据”平台的建设。据黄莹介绍,其中包括与传统企业系统对接,通过“爬虫”技术获取社交大数据来倾听客户体验,跟踪企业最新动态、加盟开源社区,基于大数据特殊应用需求定制软硬件解决方案等多个层面。
郭炜表示,从数据获取、再到存储、处理、展现、加工、挖掘,再形成用户画像,联想内部在使用着一整套的解决方案。
做“互联网+大数据”实践者
联想虽然是一名大数据领域的新兵,但对大数据有着清晰的认知,并且在内部已经开始了大数据实践。
例如,联想在互联网“爬虫”技术上有着多年的积累,并通过模拟用户行为、转换Cookie等技术来增强“爬虫”的能力。通过“爬虫”,联想能够将合作的电商平台,如京东、亚马逊、淘宝上有关联想产品的数据“爬”下来,第一时间获得用户的反馈信息、并能够将这些数据快速反馈给产品经理。
“通过对大数据进行分析、比较集中的用户信息反馈,比如电脑、笔记本跟屏幕相关的,或者是一些零部件的信息,怎么样把电脑设计得更加符合用户的使用习惯。比如有的用户是打游戏,我们就会在这个方面进行加强,在做产品定位的时候可以更加确切。这样的案例有很多,对联想产品更贴近用户产生了很大的价值”,黄莹表示,“互联网+大数据”让联想能够“聆听客户声音”,对联想改进产品有着重要意义。
在IT资源管理方面联想也应用了大数据技术。据黄莹介绍,联想大数据部门和IT部门一起协作,采集分布在世界各地数据中心的网络数据,然后分析产生价值:“如果将某一个应用布到某一个数据中心,它可能会对已有应用产生影响。我们可以通过大数据分析模拟,计算出对现在的带宽产生什么样的影响,可以对分析决策产生帮助。”
再如,联想有很多门店,过去都是用人工进行管理,这样导致的效果是低效的,决策者看不到真正发生了什么事情。如今联想建立了门店管理的大数据解决方案,联想内部的相关业务部门先跟门店进行合作,积累了比较好的经验以后再变成类似的方案,也可以分享给其他的合作方。
如今,联想的大数据方案已经初现雏形,据黄莹介绍,从爬虫技术、自然语言处理、底层大数据处理工具的平台化设计,比如Hadoop、Spark、数据清洗,以及一些数据可视化的工作,联想或者已经在实验室平台上实现,或者已经被联想业务部门应用起来。同时,定价、营销、供应链的分析等大数据方案也已经投入业务部门使用。
“在内部实施比较成功的大数据方案,联想计划将其包装成其他企业能够应用的方案付诸商用”,黄莹表示。
——从服务器、云计算、HPC,再到如今的大数据,联想在企业级市场逐渐发力。从联想大数据的应用实践、以及对大数据整体解决方案的构建不难看出,联想企业级解决方案提供商的角色已经更加鲜明。
在大数据领域,联想的优势在于有着齐全的终端设备,有着大量收集数据的渠道;具有丰富的软硬件,以及广泛的合作伙伴,具有构建大数据整体解决方案的良好基础;同时联想进行了大量的内部大数据实践,本身就是大数据的受益者,这为构建大数据方案提供了经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29