
联想要做“互联网+大数据”实践者
在服务器、HPC、云计算等企业级业务已经取得巨大进展的联想,又将目光投向了大数据。
提及联想,我们首先想到的可能会是其传统的PC、平板、手机等业务,以及近年来逐渐发力的企业级业务,对于大数据,联想还是一名市场新兵。
实际上,联想在大数据上已经有了数年的耕耘,是一名大数据的实践者。据联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹介绍,联想内部已经在IT管理、产品反馈、门店管理等多个领域应用了大数据技术,并计划将成熟的方案推向市场。
“互联网+大数据”更具价值
《大数据时代》中写道:“如今,数据已经成为了一种商业资本,一项重要的经济投入,可以创造新的经济利益。事实上,一旦思维转变过来,数据就能被巧妙地用来激发新产品和新型服务。”
没错,数据是当今企业最为宝贵的财富,故而“大数据”成为当前最热门的话题,大数据及分析被视为企业变革、获得更强竞争力的有效手段。
不过,就像历史上的很多新生事物都会经历过质疑和争论,在对“大数据”的认知上也存在着一些误区。很多时候我们认为BI就是大数据、“数据仓库+Hadoop”就代表着大数据,然而并非如此。
联想集团副总裁、联想研究院云计算与智能计算实验室主任黄莹指出,大数据技术的价值在于能快速且基于事实的支持决策而产生巨大的商业价值。相比传统的BI,大数据的数据来源要更加广泛,不仅包括CRM、ERP、网店交易或会计账簿等传统企业数据,也包括网页日志、智能电表、制造传感器、设备日志、交易系统数据等机器或传感器数据,同时还包括具有时代特色社交媒体数据,如客户评论、微博和社交平台等。
“互联网与传统企业结合单一的企业数据仓库或者单一的互联网大数据平台无法满足企业发展需要,结合企业传统数据与物联网、自然语言等技术,互联网+大数据平台应运而生”,黄莹表示。
联想集团研究院大数据总监郭炜补充说,“数据仓库+Hadoop”并不等于大数据,“在网上的数据”才是真正的“互联网+大数据”:“现在设备采集的数据、互联网对话的数据,甚至是跟用户交互的点击流和线下的行为轨迹流,都是要纳入企业数据平台的。企业在设计大数据平台的时候,一定要考虑将用户交互的数据都纳入到企业的大数据平台上。”
如今,联想所从事的就是“互联网+大数据”平台的建设。据黄莹介绍,其中包括与传统企业系统对接,通过“爬虫”技术获取社交大数据来倾听客户体验,跟踪企业最新动态、加盟开源社区,基于大数据特殊应用需求定制软硬件解决方案等多个层面。
郭炜表示,从数据获取、再到存储、处理、展现、加工、挖掘,再形成用户画像,联想内部在使用着一整套的解决方案。
做“互联网+大数据”实践者
联想虽然是一名大数据领域的新兵,但对大数据有着清晰的认知,并且在内部已经开始了大数据实践。
例如,联想在互联网“爬虫”技术上有着多年的积累,并通过模拟用户行为、转换Cookie等技术来增强“爬虫”的能力。通过“爬虫”,联想能够将合作的电商平台,如京东、亚马逊、淘宝上有关联想产品的数据“爬”下来,第一时间获得用户的反馈信息、并能够将这些数据快速反馈给产品经理。
“通过对大数据进行分析、比较集中的用户信息反馈,比如电脑、笔记本跟屏幕相关的,或者是一些零部件的信息,怎么样把电脑设计得更加符合用户的使用习惯。比如有的用户是打游戏,我们就会在这个方面进行加强,在做产品定位的时候可以更加确切。这样的案例有很多,对联想产品更贴近用户产生了很大的价值”,黄莹表示,“互联网+大数据”让联想能够“聆听客户声音”,对联想改进产品有着重要意义。
在IT资源管理方面联想也应用了大数据技术。据黄莹介绍,联想大数据部门和IT部门一起协作,采集分布在世界各地数据中心的网络数据,然后分析产生价值:“如果将某一个应用布到某一个数据中心,它可能会对已有应用产生影响。我们可以通过大数据分析模拟,计算出对现在的带宽产生什么样的影响,可以对分析决策产生帮助。”
再如,联想有很多门店,过去都是用人工进行管理,这样导致的效果是低效的,决策者看不到真正发生了什么事情。如今联想建立了门店管理的大数据解决方案,联想内部的相关业务部门先跟门店进行合作,积累了比较好的经验以后再变成类似的方案,也可以分享给其他的合作方。
如今,联想的大数据方案已经初现雏形,据黄莹介绍,从爬虫技术、自然语言处理、底层大数据处理工具的平台化设计,比如Hadoop、Spark、数据清洗,以及一些数据可视化的工作,联想或者已经在实验室平台上实现,或者已经被联想业务部门应用起来。同时,定价、营销、供应链的分析等大数据方案也已经投入业务部门使用。
“在内部实施比较成功的大数据方案,联想计划将其包装成其他企业能够应用的方案付诸商用”,黄莹表示。
——从服务器、云计算、HPC,再到如今的大数据,联想在企业级市场逐渐发力。从联想大数据的应用实践、以及对大数据整体解决方案的构建不难看出,联想企业级解决方案提供商的角色已经更加鲜明。
在大数据领域,联想的优势在于有着齐全的终端设备,有着大量收集数据的渠道;具有丰富的软硬件,以及广泛的合作伙伴,具有构建大数据整体解决方案的良好基础;同时联想进行了大量的内部大数据实践,本身就是大数据的受益者,这为构建大数据方案提供了经验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-07CDA 一级考试内容详解 CDA(Certified Data Analyst)即数据分析师认证,一级考试作为该认证体系中的入门级别考试,主要面向零基 ...
2025-08-07中介分析的 SPSS 结果解读:从原理到实践 在社会科学、医学、心理学等领域的研究中,变量之间的关系往往并非简单的直接影响,而 ...
2025-08-07