京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中国需要加快形成大数据国家战略
大数据是新的石油,是本世纪最为珍贵的财产。大数据正在改变各国综合国力,重塑未来国际战略格局。2013年7月,国家主席习近平视察中国科学院时指出:“大数据是工业社会的‘自由’资源,谁掌握了数据,谁就掌握了主动权。”
大数据“安全的小船不能说翻就翻”
数据显示,2015年全球数据泄密的事故达1673起,涉及7亿多条数据记录。《Verizon 2015数据泄露调查报告》也显示,500强企业中,超过半数曾发生过数据泄露事件。更令人惊悚的是,60%的案例里,攻击者仅需要几分钟就可以得手。没有大数据安全,就好比一个国家没有安防一样,数据得不到保护,随时有可能受到破坏、攻击和篡改,极大地阻碍大数据产业的健康发展。可见,实现大数据产业可持续发展的前提是数据安全。
我们平时关心更多的数据“锁”或者“仓库管理员”是否可靠,其实更深层次的数据安全是数据库的安全。我国大数据库几十年一直用国际技术,说白了就是别人建了仓库,我们把数据装到别人的仓库里,按别人的规则、规范使用管理自己的数据,还用别人的仓库管理员(CPU)管理数据,什么都是别人的,除了数据来源是自己的。那么,我们要怎么用这些数据?用了干什么?用了能有什么结果?最终都是国际技术说了算。久而久之,我们国人已经自觉不自觉有个观念:国际技术保障数据安全,但这种安全真的安全吗?有一天国际技术不保障这种安全了,国际技术游戏规则变化了,国际技术被核心技术国完全掌控了,我们怎么办?
在大数据时代,甚至人们连吃什么、用什么都依赖数据分析时,我们依然不把最核心的数据安全放入改革制高点去讨论,这是危险的。所以无论什么性质的改革,核心还是硬技术实力的提升,只有核心基础技术实力提升了,用改革的办法推进核心技术结构调整,减少无效和低端供给,扩大有效和中高端有核心技术支撑的供给,增强供给结构对需求变化的适应性、灵活性、安全性,提高全要素生产率,才能使供给体系更好适应需求结构变化。
在大数据时代,大数据改变人类生活的说法一点儿也不夸张,但如果没有适时建立起大数据安全保障体系,大数据意味着存在安全隐患。对任何企业、机构、机关乃至于社会来讲,大数据分析都是最敏感的资产。大数据分析工作提供了精准、关键的竞争优势;另一方面,如果上述分析被别人掌握或落入别有用心之人手中,则会陷入巨大的风险中,这对企业来讲是如此,对机构来讲是如此,对国家更是如此。
数据库技术建设是国家战略安全无法回避的问题
现在国家间实力竞争,经济实力的竞争占据主要战场,整个社会商业数据分析就是这个主要战场的核心要素,而管理运用这些要素的大数据核心技术就是这些要素的保护者,卫士也就是数据仓库。我们应该在这些核心要素上痛下功夫,无论前端多少展现平台,这不重要,至少我们可以做到把自己的数据装在自己的仓库里,并自己制定规则,虽然数据库建设是所有大数据里最难啃的技术部分,但是也是最核心部分,对技术要求最高。
如果如何使用数据和管理数据,都是我们自己说了算,最好还把这个说了算的标准拿到国际上去,让国际上也使用我们的标准,这样我们就不但拥有了自己的技术,而且拥有了被国际社会认可的,被国际社会遵从的核心技术标准,那么这种核心竞争力应该是供给侧里“补短板”最有力的体现。我们国家在国际标准委大数据分会数据库标准提案的通过,意义也就不仅仅是在国际标准化组织里制定标准这么简单。
我们国家一直以来大数据就是依赖国际技术,因为技术是人家的、产品是人家造的,标准自然就是人家制定了,定了产品标准接下来就是定游戏规则,道理很明白,就是咱们技术上突破不了,就永远用别人的游戏规则玩游戏。所以这场革命势在必行,国家正在这个方面加大力度。大力支持供给侧改革中的“补短板”,其实也是由原来“中国制造”升级到“中国智造”的技术革命过程。在原来由国际上美、德一统天下的大数据核心技术领域,标上“中国智造”这一标志也应该是具有供给侧革命性意义的。
大数据正在成为经济社会发展新的驱动力,将涵盖经济社会发展各个领域,成为新的重要驱动力。大数据重新定义了各大国博弈的空间。在大数据时代,世界各国对数据的依赖快速上升,国家竞争焦点已经从资本、土地、人口、资源的争夺转向了对大数据的争夺。未来国家层面的竞争力将部分体现为一国拥有数据的规模、活性以及解释、运用的能力,数字主权将成为继边防、海防、空防之后另一个大国博弈的空间。
笔者认为,中国需要加快形成大数据国家战略,着力规划“大数据战略”中长期路线图与实施重点、目标、路径,统筹布局,加快大数据发展核心技术研发,推进大数据开放、共享以及安全方面的相关立法与标准制定,抢占新全球科技革命和产业革命战略机遇期,重构国家综合竞争优势已经迫在眉睫。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12