
大数据不再神秘 可谁知道怎么用大数据赚钱?
大数据早已不再神秘。任何一家有EXCEL表格的公司,都敢说自己是大数据公司;任何一个地方政府公开有数字的PDF文档,就敢说是政府大数据公开。
以至于业界人士担忧,某天大家再听这个概念都麻木了,然而行业还是没有做出多少事情。
区域数字鸿沟巨大
说起掘金大数据,一定绕不开政府数据。
地方政府掌握着80%以上的数据。每隔一段时间,从中央到地方,都会发布关于大数据开放的政策。高层谈新经济,言必称大数据。
而在执行层面,目前地方政府大多处于观望状态。关注政务数据领域的清华大学数据科学研究院执行副院长韩亦舜表示,政府数据开放并没有那么复杂,需要有地方能真正去实践和摸索,做一些事情,当下所有的人都在谈数据开放,但做实事的不多。
韩亦舜曾建议西部一些地方政府借大数据发展的机会,率先开放数据获得先发优势,另外同步做好信息化补课。
6月份,笔者见到一位来北京寻求合作的西部省份地理信息测绘局局长,他长期在部委工作,前些年调到地方当部门一把手,发展大数据思路清晰,不过让他苦恼的是,当地信息化水平不高,很多地方没有数据,有的数据还在纸上。
他酝酿出台一个规定,以后所有的图都不准画在纸上,必须上网,以电子化的形式存储。当下他最想解决的问题是信息化,先收取数据,然后通过建立地方数据中心的形式,与企业合作,做地理信息垂直领域的数据开放和挖掘。
走在前沿的贵州省,希望以发展大数据弯道超车,实现新经济的腾飞。然而从数据开放的程度来看,当地一些职能部门,所谓的公开数据还停留在提供PDF文件阶段,远非结构化的数据,按照国际数据公开标准来说,并不能算政府数据公开。
单从数据开放来看,思路最清晰规划更具体的,还是广东、上海等发达地区。对于地方政府的大数据园区来说,发达地区好比“富二代”,一出生就含着金汤匙,但大部分地区还是“穷二代”,需要更大力度的数据挖掘与开放。由于各地在大数据方面存在差距,不同区域的数字鸿沟会继续深化。
饥渴的大数据创业公司
在掘金大数据的背景下,企业早已经等不及了。
早些年,部分企业通过各种交易手段,获得政府数据。在数据开放的背景下,部分企业还在依托不规范交易,已经有政府部门被巡视组查出了因数据交易衍生腐败。
一部分企业希望参与政府数据公开进程,帮助政府做数据公开。比如数据堂公司与贵阳市政府共建数据生态城市。还有一批公司,则是急速扩张,跟各地政府成立相关的合资公司。
当然,还有转型大数据二次创业的公司。在贵阳数博会上,笔者见到很多大数据公司,就是以前卖电脑和软件开发的IT公司,转型做大数据,业务范围无所不在,包括智慧城市、软件开发、智慧农业、医疗等。
除上述归类外,企业为了获取政府数据,采取各种“曲线救国”的招式。前不久,笔者熟悉的一家南方大数据创业公司,为了获取某西部城市政府部门数据,报名参加当地的创业大赛,希望通过得奖,引起当地政府重视,达成数据合作。
这家公司的CEO在参赛间隙,拖着行李箱与当地国企联络,希望能够以合资的形式成立公司,共同挖掘当地数据。
这位CEO还通过各种方式,找到该市分管大数据的负责人,希望能够谈成合作。他勾画的蓝图很美好:获取一个城市的数据,做成样板,然后在全国复制,迅速从0到1成为该行业的“寡头”企业。
不过,目前还没有关于这家公司取得实质进展的消息,但这家公司寻求政府大数据开放的决心和路径,颇具有典型性。
政府资源导向,仍是目前很多数据公司努力的方向。很多大数据公司在融资过程中,强调一定要有国有资本进入,而且坚决远离境外资本。
从2015年国内最大的几笔大数据创业公司的融资情况来看,几乎都有国有资本进入,即便只占很小的比重。在某大数据公司融资发布会上,笔者随机问了几家投资机构选择投资这家公司的原因,答案惊人一致:有政府数据资源。
而在一些专家和专业投资人看来,从价值投资的角度,一是真正有技术优势的公司,二是有自己数据源的公司。依托政府资源的公司,从长远来说,并没有太大的投资价值。
乐观者认为,政府数据开放最终会走向规范化,有科技含量的公司最终会在泡沫破灭后存活下来。
BAT能否领军?
BAT中的某一家,会成为全球最大的数据公司么?
在专业人士看来,媒体喜欢造概念,这个说法很不专业。因为数据就像石油一样,每个地理区间都有,谁储存了多少,很难量化和比较。
马化腾和张小龙都说,他们很焦虑,因为用户花在微信上的时间太多了。不过马化腾又说,微信公众号是腾讯前三年最伟大的发明,因为可以把人留在微信上,大家就离不开了。
BAT三家公司一方面通过自身的数据,做出反映数字中国的图谱,甚至把脉经济走向;另外也在建立自身的数据生态体系;以百度为代表,则认为大数据的最终应用是人工智能。
京东CTO张晨告诉笔者,因为京东有自己的物流体系,其电商数据包括详细的消费者画像。张晨说,如果通过电商大数据分析,提高精准服务水平,能提高销售一个百分点,对京东来说都是很大的大数据价值变现。
互联网企业的数据,在整个大数据生态中,能够起到多大作用,各方都在摸索。很多人认为,互联网企业的数据价值被高估了。
比如韩亦舜认为,相对实体经济来说,互联网企业的数据,更多是第三产业,是对消费者端的,相对整个实体经济,比如说制造业体系产生的数据,互联网数据并不算多。
“互联网只是个工具。”国家统计局一位原副局长在一次数据研讨会上直言。他认为,互联网是传递现代数据的工具,不能唱得比实体经济还高。
至于BAT如何从大数据掘金,笔者聊了很多业内人,听得都不太明白,仍不得解。一家企业CEO表示,现在大家的思路其实都不清晰。
6月份,马云在一次活动上说,阿里是一家大数据公司,不过我们也不知道怎么用数据挣钱。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28