京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代下的银行业:围绕客户体验创新求变
中国金融服务业正在发生翻天覆地的变化,除了持续的金融系统改革外,中国的商业银行面临着更具挑战的客户预期以及诸多新机构的竞争。为了保持竞争优势,金融机构采取措施,利用更加先进的数据和分析能力,提供移动银行等数字渠道服务,提升客户参与度和全渠道体验。”在6月23日举行的2016年中国国际银行会议上,亚洲银行家主席以理表示。
进入大数据时代,变革正在银行业中迅速蔓延。从银行家们的视角来看,大数据技术赋予了银行业新的转型驱动力,提升客户体验则成为现如今银行业的变革核心。
银行业的竞争演变:从客户到用户再到账户
当前,大数据已渗透到了生活场景方方面面,如今是一个万物互联的时代。在此背景下,银行业的诸多传统观念开始被打破,呈现出新的趋势。
首先是去存款化趋势。“我们零售客户管理资产当中,存款的占比是逐步降低的,这是趋势,这其中有利率市场化的因素,也因为存贷比监管的放松,还有客户已养成投资的习惯。”中信银行零售银行部副总经理汪雷表示。
与此同时,随着监管政策的变化,银行原来更多注重规模类的指标观念开始改变,传统的以产品为中心的营销模式,正在向以客户为中心的营销模式转变。
“如今,银行更注重的是通过精准营销提升单一客户的贡献度。”汪雷说。
另一趋势是,随着大数据的发展,相对于客户数而言,如今更被银行业看重的是用户数。
“高黏性的叫做用户,客户可能有一万个,但是真正的用户可能只有一千个。若用户再往下分一级,就是账户。”因此,汪雷认为,还有一个趋势,就是未来银行和银行之间的竞争以及银行和非银行金融机构的竞争,一定会是账户级的竞争。
大数据技术的应用核心:提升客户体验
在这些趋势下,大数据技术能给银行带来什么?业内人士认为,银行利用大数据的潜力无穷,巧妙运用数据科学技术可以开辟全新的机遇。
“运用大数据分析提升客户体验的方式,意味着银行可以提供更有针对性和有效控制成本的营销活动,设计产品并针对特定客户需求提供特色产品,甚至发展出更精确的模型评估信用和检测交易息差行为。与此同时,若以创造性的方式合并数据,则可留住和提升客户的忠诚度。对于银行而言,这意味着更有利可图的业务。”中国银行总行授信评审委员会专职评委伍伟烨表示。
大数据技术的核心在于提升客户体验,那么,银行业的下一步动作会是什么?
“更多的数据并不等于更好的数据,因此银行需要应用大数据确定对推进其业务发展趋势有用的部分。大数据分析要使用所有可用的数据预测消费者可能如何回应,数据收集渠道因此需要横跨客户内部、社会、监管,银行开始对数据进行排序,以确定最有价值的信息所在。利用大数据分析,帮助银行获得更深入的信息,由此产生的营销策略更精确,并最终提出一个消费者可能接受的报价,其结果是双赢的局面。”伍伟烨认为。
事实上,对于银行而言,数据一直是其亟待开发的潜在优势。
“银行早已获得比其他企业更多的消费者数据,且银行持有其客户数据的数量和品种稳步增加。用详细的客户数据中支出和收入的信息,做到对人们在哪里进行消费心中有数。银行正用独特的视角勾画客户每一个清晰的画面。”伍伟烨说。
传统网点的转型升级:更注重营销气氛
物理网点是银行业避不开的话题。在大数据时代下,传统物理网点的弊端显露无疑。
“在传统的物理网点模式下,服务半径和服务人数都存在着‘天花板’。以我们5年前调研的中信杭州嘉兴同乡支行为例,该网点的物理服务半径限制在了3公里,一天叫号的饱和度是500个。”汪雷说。
互联网技术的切入使得物理网点的这一“天花板”得以被打破。
“通过互联网技术,银行传统物理网点可以是无边界的。如今,我们再到同乡支行就惊喜地发现,现在线上的一些获客技术和线上平台的客户营销已经把物理网点的覆盖半径以及物理网点的现场服务人员这两个瓶颈突破了。”汪雷说。
那么,在互联网的颠覆下,物理网点是否还有存在的必要?
“人和人之间需要沟通,那么客户就还需要网点。客户不可能全在线上,也不可能全在线下,需要一个线上线下相互交互的过程。与传统不同的是,如今的网点定位应该是用来建立沟通、信任和交流的场所。”北京银行电子银行部总经理施展说。
互联网和移动互联网的快速发展,正让线上线下协同落地成为可能。在此方面,北京银行2014年推出的智能轻网点,就是线上线下协同发展新兴零售网站运营的典型模式。
“智能轻网点把传统网点中大量操作的部分通过网上银行、手机银行和自助设备改由客户自主操作来完成,网点人员只有2到3个人,且保留下来的都是营销人员,这是互联网时代线下网点最有价值的部分。”据施展介绍,由于网点没有了任何操作,所以在网点建设上,可以不拘泥传统网点为操作所设计的模式,而是在设计上让人感觉更亲和,让客户有走进来的欲望。
“这种模式建立以后,客户进来可以坐得住,银行人员考虑的是营销和客户关系,不用考虑任何操作,交互性非常强。”施展说。
对于银行而言,这种模式同时大大降低了网点成本。
“传统银行网点围绕操作所配备的物理面积和人员成本其实很高,没有了这些以后,可以把更多的面积留给客户,银行的面积可以降到很小,而且银行只需要配备营销人员。由于占地面积缩小、人员减少,事实上我们的智能轻网点成本很低。”据他透露,自2015年至今,智能轻网点模式在北京银行13家分行中已经运行了10家,部署网点达到40家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02