
使用Hadoop处理大数据,你需要了解它的优点和缺点
由于从各光伏电站采集的数据量较大,必须解决海量数据的查询、分析的问题。目前主要考虑两种方式:
2. Oracle(数据仓库)+BI;
本文仅介绍hadoop的技术要应用特征。
hadoop是一个平台,是一个适合大数据的分布式存储和计算的平台。什么是分布式存储?这就是后边我们要讲的hadoop核心之一HDFS(Hadoop Distributed File System);什么是分布式计算?这是我们后边要讲的hadoop另外一个重要的核心MapReduce。
hadoop的优点一:低成本
hadoop本身是运行在普通PC服务器组成的集群中进行大数据的分发及处理工作的,这些服务器集群是可以支持数千个节点的。
hadoop优点二:高效性
这也是hadoop的核心竞争优势所在,接受到客户的数据请求后,hadoop可以在数据所在的集群节点上并发处理。
hadoop优点三:可靠性
通过分布式存储,hadoop可以自动存储多份副本,当数据处理请求失败后,会自动重新部署计算任务。
hadoop优点四:扩展性
hadoop的分布式存储和分布式计算是在集群节点完成的,这也决定了hadoop可以扩展至更多的集群节点。
hadoop安装方式|hadoop部署方式
hadoop安装方式只有三种:本地安装;伪分布安装;集群安装。
1:超大文件
可以是几百M,几百T这个级别的文件。
2:流式数据访问
Hadoop适用于一次写入,多次读取的场景,也就是数据复制进去之后,长时间在这些数据上进行分析。
3:商业硬件
也就是说大街上到处都能买到的那种硬件,这样的硬件故障率较高,所以要有很好的容错机制。
1:低延迟数据访问
Hadoop设计的目的是大吞吐量,所以并没有针对低延迟数据访问做一些优化,如果要求低延迟, 可以看看Hbase。
2:大量的小文件
由于NameNode把文件的MetaData存储在内存中,所以大量的小文件会产生大量的MetaData。这样的话百万级别的文件数目还是可行的,再多的话就有问题了。
3:多用户写入,任意修改
Hadoop现在还不支持多人写入,任意修改的功能。也就是说每次写入都会添加在文件末尾。
在大数据背景下,Apache Hadoop已经逐渐成为一种标签性,业界对于这一开源分布式技术的了解也在不断加深。但谁才是Hadoop的最大用户呢?首先想到的当然是它的“发源 地”,像Google这样的大型互联网搜索引擎,以及Yahoo专门的广告分析系统。也许你会认为,Hadoop平台发挥作用的领域是互联网行业,用来改 善分析性能并提高扩展性。其实Hadoop的应用场景远不止这一点,深入挖掘的话你会发现Hadoop能够在许多地方发挥巨大的作用。
美国着名科技博客GigaOM的专栏作家Derrick Harris跟踪云计算和Hadoop技术已有多年时间,他也在最近的一篇文章中总结了10个Hadoop的应用场景,下面分享给大家:
在线旅游:目前全球范围内80%的在线旅游网站都是在使用Cloudera公司提供的Hadoop发行版,其中SearchBI网站曾经报道过的Expedia也在其中。
移动数据:Cloudera运营总监称,美国有70%的智能手机数据服务背后都是由Hadoop来支撑的,也就是说,包括数据的存储以及无线运营商的数据处理等,都是在利用Hadoop技术。
电子商务:这一场景应该是非常确定的,eBay就是最大的实践者之一。国内的电商在Hadoop技术上也是储备颇为雄厚的。
能源开采:美国Chevron公司是全美第二大石油公司,他们的IT部门主管介绍了Chevron使用Hadoop的经验,他们利用Hadoop进行数据的收集和处理,其中这些数据是海洋的地震数据,以便于他们找到油矿的位置。
节能:另外一家能源服务商Opower也在使用Hadoop,为消费者提供节约电费的服务,其中对用户电费单进行了预测分析。
基础架构管理:这是一个非常基础的应用场景,用户可以用Hadoop从服务器、交换机以及其他的设备中收集并分析数据。
图像处理:创业公司Skybox Imaging 使用Hadoop来存储并处理图片数据,从卫星中拍摄的高清图像中探测地理变化。
诈骗检测:这个场景用户接触的比较少,一般金融服务或者政府机构会用到。利用Hadoop来存储所有的客户交易数据,包括一些非结构化的数据,能够帮助机构发现客户的异常活动,预防欺诈行为。
IT安全:除企业IT基础机构的管理之外,Hadoop还可以用来处理机器生成数据以便甄别来自恶意软件或者网络中的攻击。
医疗保健:医疗行业也会用到Hadoop,像IBM的Watson就会使用Hadoop集群作为其服务的基础,包括语义分析等高级分析技术等。医疗机构可以利用语义分析为患者提供医护人员,并协助医生更好地为患者进行诊断
其实我们要知道大数据的实质特性:针对增量中海量的结构化,非结构化,半结构数据,在这种情况下,如何快速反复计算挖掘出高效益的市场数据?
带着这个问题渗透到业务中去分析,就知道hadoop需要应用到什么业务场景了!!!如果关系型数据库都能应付的工作还需要hadoop吗?
比如:
1.银行的信用卡业务,当你正在刷卡完一笔消费的那一瞬间,假如在你当天消费基础上再消费满某个额度,你就可以免费获得某种令你非常满意的利益等 等,你可能就会心动再去消费,这样就可能提高银行信用卡业务,那么这个消费额度是如何从海量的业务数据中以秒级的速度计算出该客户的消费记录,并及时反馈 这个营销信息到客户手中呢?这时候关系型数据库计算出这个额度或许就需要几分钟甚至更多时间,就需要hadoop了,这就是所谓的“秒级营销”. 针对真正的海量数据,一般不主张多表关联。
2. 在淘宝,当你浏览某个商品的时候,它会及时提示出你感兴趣的同类商品的产品信息和实时销售情况,这或许也需要用到hadoop。
3. 就是报表用到的年度报告或者年度环比数据报告的时候也会用到hadoop去计算。
4.搜索引擎分析的时候应该也会用到。一个网友说过,其实还是看big data能否带来多大的效益!比如银行在躺着都赚钱的情况下,big data不一定是银行的项目. 况且hadoop是新兴技术,银行业对新技术还是相对保守的。
hadoop 主要用于大数据的并行计算,并行计算按计算特征分为:
• 数据密集型并行计算:数据量极大,但是计算相对简单的并行处理。如:大规模Web信息搜索;
• 计算密集型并行计算:数据量相对不是很大,但是计算较为复杂的并行计算。如:3-D建模与渲染,气象预报,科学计算;
• 数据密集与计算密集混合型的并行计算。如:3-D电影的渲染;
hadoop比较擅长的是数据密集的并行计算,它主要是对不同的数据做相同的事情,最后再整合。
我知道以及曾经实验过的hadoop的例子有:
• wordCount (相当于hadoop的HelloWorld的程序);
• 文档倒排索引;
• PageRank;
• K-Means 算法;
这些程序都可以从网上找到相应的解决方案。
hadoop的是根据Google MapReduce 提出的开源版本。但是它的性能不是很好。
hadoop主要应用于数据量大的离线场景。特征为:
1、数据量大。一般真正线上用Hadoop的,集群规模都在上百台到几千台的机器。这种情况下,T级别的数据也是很小的。Coursera上一门课了有句话觉得很不错:Don’t use hadoop, your data isn’t that big.
2、离线。Mapreduce框架下,很难处理实时计算,作业都以日志分析这样的线下作业为主。另外,集群中一般都会有大量作业等待被调度,保证资源充分利用。
3、数据块大。由于HDFS设计的特点,Hadoop适合处理文件块大的文件。大量的小文件使用Hadoop来处理效率会很低。举个例子,百度每天都会有用户对侧边栏广告进行点击。这些点击都会被记入日志。然后在离线场景下,将大量的日志使用Hadoop进行处理,分析用户习惯等信息。
MapReduce的一个经典实例是Hadoop。用于处理大型分布式数据库。由于Hadoop关联到云以及云部署,大多数人忽略了一点,Hadoop有些属性不适合一般企业的需求,特别是移动应用程序。下面是其中的一些特点:
Hadoop的最大价值在于数据库,而Hadoop所用的数据库是移动应用程序所用数据库的10到1000倍。对于许多人来说,使用Hadoop就是杀鸡用牛刀。
Hadoop有显著的设置和处理开销。 Hadoop工作可能会需要几分钟的时间,即使相关数据量不是很大。
Hadoop在支持具有多维上下文数据结构方面不是很擅长。例如,一个定义给定地理变量值的记录,然后使用垂直连接,来连续定义一个比hadoop使用的键值对定义更复杂的数据结构关系。
Hadoop必须使用迭代方法处理的问题方面用处不大,尤其是几个连续有依赖性步骤的问题。
MapReduce (EMR),这是一项Hadoop服务。Hadoop旨在同期文件系统工作,以HDFS著称。
当用户用EMR创建了一个Hadoop集群,他们可以从AWS S3(亚马逊简单储存服务)或者一些其他的数据存储复制数据到集群上的HDFS,或者也可以直接从S3访问数据。HDFS使用本地存储,而且通常提供了比从S3恢复更好的性能,但是在运行Hadoop工作之前,也需要时间从S3复制数据到HDFS。如果EMR集群要运行一段时间,且针对多项工作使用相同的数据,可能值得额外的启动时间来从S3复制数据到HDFS。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13