京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据或将解决房地产行业瓶颈问题
正被大数据改变的房地产行业,也会面临瓶颈,日前多家房地产相关企业发布大数据职能产品,宣称挑战房地产信息不对称。
国内首款房地产大数据人工智能产品“MASA-慧赢销”(简称MASA) 团队负责人陈焱指出,大数据、人工智能等技术引入房地产行业,形成“互联网+房地产”大循环,将最终解决房地产交易信息不对称瓶颈。
同策咨询研究总监张宏伟指出,打通、连接、提升商业台前台后所有场景,以资产数据化为目标,为客户规划技术路径,以“技术+服务”为基础,从互联网建设开始,一步步实现管控,一方面解决了房地产信息不对称的瓶颈,另一方面也为房地产资产证券化积累基础数据,将对全行业转型产生影响。
知名科技作家陈根则指出,“互联网+”浪潮对房地产业带来的影响,一方面是在硬件设施方面,借助互联网技术将物业、住宅内外的控制设施与手机之间建立连接;另外是软件方面,借助手机APP实现物业服务无人化管理。
陈根认为,随着“互联网+房地产”的不断深入,房地产领域的大数据价值将会成为新的商业蓝海。
信息不对称难题
房地产产业链对于信息透明的需求已经很迫切,平台服务商应运而生。
比如房企拿地前需要大量市场调研,但缺乏有效的调研工具和依据;房产中介经纪人在服务时,只能根据与客户见面时获得的信息,猜测客户对房源地段的偏好。可很多经纪人只能用一通又一通的电话获取信息。
对房屋买卖双方而言,他们需要的则是更加明确的信息,希望压缩看房与谈判时间,尽快解决问题。
陈焱将这些问题归结于房产交易的三大瓶颈:“沉默数据+经验判断”;缺乏对客户的把握性;缺乏有效工具来评价营销效果。
目前的“互联网+房地产”大多局限于服务模式的改变,包括从原先的线下交易向O2O转变、利用共享经济提倡互助交易等;但缺乏从技术上解决信息不对称的根本问题。
“MASA-慧赢销希望在这些问题上有所突破”。陈焱说,由同策咨询、TalkingData和脉策数据联合研发的MASA,提出了对全面解决房地产交易各个环节和环节中各方对信息的需求满足。
要把大数据、人工智能等技术引入“互联网+房地产”,以解决房地产交易在信息不对称上的瓶颈,关键是线下楼盘数据的铺点和采集。这也催生了各种大数据公司。比如容易网专为零售业提供全渠道整合营销方案及配套设备及商业圈媒体运营,从2012年成立至今,已超过300家商场结盟。
核心在对决策的支持
在日前举行的一个大数据论坛上,香港科大计算机系主任杨强教授在演讲中指出,少量公开数据的获取难度不大,但是真正对于商业决策有帮助的大量公开数据的收集难度是很大的,搜索、整理、挖掘、呈现出其中的关联关系,并呈现出一个具象化的结果,难度就更大,所以各个行业均需要一个更加高效、直接的方法帮助企业与个人把杂乱信息转换为决策支持。
悦商科技总经理吴弼川认为,商业+互联网的核心,关键在全面行为数据化和经营空间扩展,实现每一个场景和消费者都与前后台数据库无缝对接。
据陈焱介绍,MASA团队构建了房地产行业、客户、城市三个方面的底层数据库,整合了TalkingData和银联智惠两大数据运营商,为产品核心算法提供数据源。据悉,MASA团队用了近一年的时间进行线下楼盘数据的铺点和采集,建立了首个可用于分析算法建模的楼盘字典信息库。
他举例说:“MASA根据人们对房源的了解需求,建立了丰富的楼盘字典,在定义一套房源的属性时,需要收集60个大项、300多个小项的数据。”
这只是MASA对房源数据的收集和整理,同时还有针对客户数据的整理和分析。最终目标是实现对房产交易的精准洞察,从而能同时帮助买卖双方。
在同策咨询董事长孙益功看来,随着大数据的应用,未来有三类公司可以从中受益:产生数据的公司,比如谷歌等制造数据的企业,通过整理、分析,可以创造价值;具备数据能力的公司,比如那些利用数据能对人的决策、对商业流程以及商业判断产生本质影响的企业;具有数据思维的公司,即将大数据思维应用到公司决策、生产和服务中。
显然,上述多个大数据产品只是一种工具和探索,希望让更多处在房地产产业链上的企业和个人从中受益。
陈根指出,可以预见不久的将来房地产销售领域将被人工智能所取代,也即具有人工智能技术的机器人,不过这一切实现的基础是基于大数据。而机器人销售成交率的高低,一方面除了人工智能技术本身的“智能”程度以外;另外一个关键因素就是大数据的质量。
综合业内人士评价指出,值得关注的是在大数据时代如何保护用户隐私,或者可以理解为用户数据在商业挖掘过程中的商业边界问题。当然,对于房地产企业而言,除了互联网+房地产之外,大数据+房地产或许是个更具有潜力的价值点。不论是互联网+房地产,或是房地产大数据营销,除了看到数据的商业价值之外,或许我们需要更多的思考大数据时代用户的隐私权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12