京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据风控谁想做就能做?
互联网金融火了,大数据风控也火了。于是,不断地有公司跳出来说自己要做大数据,为互联网金融企业提供大数据风控。那么,这些公司手里面掌握着怎样的数据呢?数据量有多大呢?
自己没有核心数据做大数据?
很 多号称做大数据的公司,其实自己并没有任何的核心数据。他们所谓的大数据,无非是通过技术手段,从网上抓取的一些数据,就变为自己的核心数据,成为可以做 大数据风控的依据了。但是,这样的数据,其真实程度有多少呢?我们都知道,互联网发展到今天,已经发展到一个非常成熟的时代,任何公司对自己的数据安全都 是异常谨慎的。每个公司都将自己的核心数据视若珍宝,任何的核心数据都是不会主动让任何第三方抓取的,通过层层堡垒,将其保护起来。因而,通过技术手段抓 取到的数据,是很难抓取到最核心的数据的,核心数据的缺失,抓取再大的数据量也是不可靠的。
没有数据量大数据风控又从何谈起?
除 了第三方公司提供大数据,网贷行业内有些平台也在做大数据风控。这些平台自建风控模型,通过用户的社交账号信息、学历、星座等等指标进行信用评估,以形成 信用报告。但这样的数据模型还是会面临一个问题——收集到的数据量是否足够大?2000年以后,互联网已经深入到了我们生活的方方面面,我们已经在互联网 上有了足够的信息留存,通过这些数据基本就能够对一个人进行全面的评估与分析。但是这样的数据一定是巨大与繁杂的,不是哪家企业想分析就能够做得了的。况 且互联网的信息,特别是社交类信息,其真实性起码应该可以打个八折吧!
什么样的数据才是最可靠的呢?
深耕互联 网行业的巨头,其手中掌握的数据,才有一定的参考价值。阿里通过十几年的发展,掌握了大量网购人士和电商从业者的相关交易数据,凭借这些数据,推出了自己 的大数据征信:芝麻信用;而腾讯作为另一巨头,掌握着大量的社交信息相关数据,随着微信的越来越全面,微信支付的普及,也即将推出自己的大数据征信。当 然,阿里手里掌握的数据和腾讯有所不同。
基于自身领域的不同,阿里掌握着电商平台的交易数据,月成交量,流水一清二楚。这样,阿里能够运用 其掌握的数据,对电商平台进行大数据风控,评估其还款能力,解决还款能力的评估的环节;而腾讯基于其及时通讯软件,能够抓取的更多的是社交数据:地区、年 龄、性别、社交关系、学历、关注领域……腾讯基于自己的大数据分析之后,更多的可能就是解决还款意愿的评估。
阿里和腾讯分别解决了还款能力和还款意愿方面的评估,两者都是最核心的风控要素。这样的数据评估对网贷行业的风控促进意义非凡。
真正的大数据风控会给网贷行业带来什么样的改变呢?
p2p 网贷07年进入中国,并在13年开始爆发。行业发展到现在,越来越多的传统金融企业转型做互联网金融,整个行业是如火如荼。但是,举目望去,p2p在中国 落地,已经是变异了的p2p。很多平台都是线上有个网站,而借款端的业务严重依赖于线下,风控更是离不开线下。这样导致的结果就是平台规模越大,风控的压 力越大。严重依赖于风控人员的个人经验,这样就导致平台除了面对业务的风控压力外,还需要面对风控人员的道德风险。但风控要都交给系统来做又会如何呢?其 前提条件是,要有足够的数据。数据从何而来?电商界!
今年伊始,华南一知名的电商企业多赢以6000万注资了深圳某P2P网贷平台。电商涉足网贷,已经真实发生了。电商做p2p,依靠电商领域能够获取到的核心数据,建立大数据模型,利用大数据进行风控,从而抛弃繁重的线下,这样才能实现互联网金融的使命:便捷、高效。
大数据风控真正的实现还有很长一段路要走
多赢电商虽然进入了p2p网贷领域,但其注资的平台,目前做的还是传统的房贷业务,其采用的依然是传统的线下风控模式,在短期内也很难利用大数据进行风控。 但是长期看来,并不排除多赢进来后,其投资的平台结合电商资源,进行业务创新,在借款端推出电商供应链相关业务,又或者是基于自身的核心数据,加上与阿 里、腾讯这样有实力第三方的征信服务商合作,真正做到大数据风控,实现互联网金融的便捷、高效。但无论如何,要实现大数据风控,都还要走一段很长的路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27