
使用大数据,就像在沙子里淘金
在过去几年,我们这个世界上的数据的增长速度,相当于之前5年、10年的50倍。
大数据为什么在这个点上爆发?主要原因是,摩尔定律使得存储的数据量空前扩张。与此同时,类似RFID那样的传感器技术也得到了质的提升。于是,就出现了这样的例子——
当某著名服饰品牌把RFID的芯片放在衣服上,如果你觉得一件衣服挺好看,拿到试衣间试,试完了却没买,芯片依然能记录下你试穿了多长时间。由此,他们就会去研究,到底是什么问题,让你没有选择他们的产品。至于你试都不试,他们则认为这很可能是店铺陈列摆放的问题。基于由上述这些数据收集而产生的质量管理和服务改进,这家店的销售额在过去10年里涨了5倍,非常可观。
另外一个例子,如今也非常有名了。美国第二大连锁百货TARGET将大数据运用于营销。某天有一位父亲特别生气,到店里来投诉。他说我的女儿只有14岁,可是你们给她推送母婴广告。结果过了一个星期,经理打电话回访这个父亲,这位父亲表达了歉意:上次是我态度不好,我的女儿是怀孕了。事实就是这样:如果你总是在淘宝上买生活用品,你们家什么时候需要买手纸了,马云可能比你的家人知道得还早。
随着上面的例子越来越多,有人开始认为,我们现在正处在人类历史上的又一个节点:机器的智能有可能在我们这个时代超过人的智能。
这种推理是怎么来的呢?
持上述观点的人认为:由于计算机的速度会不断增加,而人的能力发展基本上是平行的,所以未来某个时间点上,机器智能极有可能超过人的智能。这时,如果我们善于利用大数据的特征,可以达成两件事。其一,可以换一种思维方式来看待世界。其二,可以制造更先进的机器智能。
换言之,大数据就像在一堆沙子里面淘金。当你利用到相较于今日一万倍的数据时,量变到质变的跃升就很可能产生。从这个意义上来讲,未来所有的公司,都可能是要使用大数据的公司。
真正的受益者不会超过2%
未来世界的机器是不会控制人的,但制造智能机器的人,能通过机器控制其他人。比方说,经常去京东、淘宝买东西,实际上就是被他们控制; 天天用微信,某种程度上就被腾讯控制。
在大数据时代,很多商业模式也会变。比如,过去有一个“吉利模式”,买一个刀架送一个刀片。然后吉利靠消费者后期的耗材消费挣钱。可如今,一个冰箱品牌做了这么一件事。它内置于冰箱的芯片可以获知你家有多少牛奶、多少鸡蛋。当这些东西没了,它就会通知给你送来。换言之,这个冰箱除了冷冻功能,还被赋予了“货架”功能。
未来世界里的大数据思维,将细到每一个人、每一个商品、每一笔交易,逐渐影响我们的生活,改变整个生态链。与此同时,技术的发展也不可能人为地停止下来。
但很遗憾的是,在任何一次重大的技术革命中,一开始受益的都是2%的人。正如蒸汽机的发明,第一波受益的,是发明家、工厂主,这是18世纪晚期的事。但连英国维多利亚女王迎来她特别荣耀的时代,都是19世纪中期的事了。美国工业革命,受益的是爱迪生。如今特斯拉也挣了很多钱,受益的是支持他们的GP摩根以及各种关联制造商。老百姓什么时候开始受益呢?是不是过两年,其余98%的人就能受益了呢?不是,可能要经过两代人,半个世纪后,才能有98%的人受益。
美国IT革命,从摩尔定律的发明到今年正好是51年,很多人还没有受益。美国和中国很幸运,踏准了信息革命的节奏。但在我们的周围,南美洲、整个阿拉伯地区、东欧地区,甚至南欧,对IT革命的贡献几乎为零。我希望大家能看到站在你们后面的这98%的人。你们要关注这些,更要坚守住这2%的位置。
学习是一辈子的事
前一阵谷歌的AlphaGo非常火,于是有人问,AlphaGo的学习速度太惊人了,和以前的学习方法相比,未来年轻人的学习,是否只剩下思维模式上的突破?
后来我一个同事,他的孩子在学下棋,他就说那我们去把AlphaGo这个程序打开,看看它到底怎么下的,让孩子学学。结果打开一看,发现根本没法模仿,里面就是一个很简单的数学模型,然后一堆乱七八糟的数字。所以,机器产生智能和人产生智慧完全是两回事。但我想讲两点——
第一,机器最擅长的工作还是重复性。AlphaGo 差不多有50个左右的版本,有时候一天就下好几千盘棋。但人类最重要的一个能力是创造力。在我们祖先活下来的地方,比如走出非洲那会儿,除了生存,还有乐器、创造性和想象力。
第二,比学习方法、思维模式更重要的,其实是终身学习。学习是一辈子的事,这点最重要。我原来周围有一些人比我的学业能力要强一些,但他们一旦拿到博士,就把书本一扔,从此不再学习,慢慢他们的知识就老化了。而我虽然不是一个有很好学习方法的人,却是一个能够不断学习的人。
正如你和你的父辈要掌握的技能早已不同,如今,说任何一个专业如何好、如何坏都失之简单。现在来讲,已经很难有专业比人的寿命要短,因此,你要做好在不远的未来换专业的准备。也许你的专业会过时,但你利用最先进的技术,比如计算机,来学习和提升自己这件事,永远不会过时。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30