
数据存储的七大特性分析
在新技术浪潮中,数据存储的应用呈现出以下新的特点:
1. 数据成为最宝贵的财富
由于越来越多有价值的关键信息转变为数据,数据的价值就越来越高。数据丢失对于企业来讲,损失将是无法估量的,甚至是毁灭性的,这要求数据存储系统具有卓越的系统可靠性。
2. 数据总量呈爆炸性的增长
人们在信息活动中不断地产生数字化信息,各种新型应用也层出不穷,如流媒体、数字电视、IDC、ASP、ERP、数字影像、事务处理、电子商务、数据仓库与挖掘等,因此造成数据总量呈几何级数增长。
计算机网络技术的进步,特别是因特网及Web 应用的推广,不仅大大增强了人类的信息生产能力,而且使得信息的服务更为全球化。近年来,人类生产的信息量超过了网络时代以前人类积累的所有信息的总和,而且信息生产的速度依然在持续上升。据UC Berkley 2001 年公布的数据显示,未来3 年内所产生的数据将超过过去4万年中产生数据的总和,而且93%的新生成的信息为数字形式。
信息技术的飞速发展,推动了对信息存储的巨大需求。无疑,这造成了对于存储系统的容量需求大大增长。因为永远都有新的数据产生,所以对存储容量的需求是没有止境的。这要求现代存储系统应该具备高度的可扩展性,并且现代应用还要求这种扩展应该不中断正在进行的业务,实现动态可扩展。这些需求都是对数据存储系统容量、动态可扩展性的前所未有的挑战。
3. I/O成为新的性能瓶颈
早期计算机仅用于计算,CPU的计算能力是计算机技术发展的瓶颈。后来在网络应用中,计算机通信成为占时间最多的事件,网络带宽成为新的技术瓶颈。目前,计算机的主要应用模式已经转化成数据的存储和访问。受机械部件的限制,磁盘数据访问时间平均每年只能提高7%~10%,数据传输率也只能以每年提高20% 的速度发展,而同时现代微处理器和内存系统正以平均每年增长50%~100%的速度发展,处理机和磁盘之间的性能差距已经越来越明显。根据Amdahl 定理,计算机系统性能的提高要受限于系统中最慢的部件。因此,数据存储系统已经成为计算机系统新的性能瓶颈,即所谓的I/O 瓶颈。传统存储结构难以解决这一问题,采用新型存储结构,大幅度提高存储系统性能的需求越来越迫切。
4. 全天候服务成为大势所趋
在电子商务和大部分网络服务应用中,365×24小时的全天候服务已是大势所趋,这要求现代数据存储系统具备优异的高可用性。
5. 数据存储管理和维护要求集中化、自动化、智能化
以前的数据存储管理和维护大部分由人工完成。由于数据存储系统越来越复杂,对管理维护人员的素质要求也越来越高,因管理不善而造成数据丢失的可能性大大增加。这就要求现代存储系统具有易管理性,最好是具有智能的自动管理和维护功能。
6. 实现多平台的互操作和数据共享
由于历史原因,用户的系统中存在着多种信息平台,这就要求存储系统实现多平台的互操作性和数据共享,从而具有高度的系统开放性。
7. 存储系统在中高端计算机系统价值中所占比例不断升高
在IT预算中,数据存储所占的比例大幅度逐年增长,目前已经超过75%。对于存储系统需求的变化,从近年来存储市场的发展可见一斑。在2001 年,尽管全球性的IT业大萧条气氛弥漫整个IT 领域,但全球整个信息存储市场规模仍比上一年增长了14.3%,达到364.7 亿美元。2002 年总体上虽有所放缓,但仍保持了近12%的增长率。
根据IDC的预测,未来,全球数据存储市场规模可达到580.343亿美元。数据存储系统的容量平均年复合增长率达到80%,销售平均年复合增长率达到12%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10