京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据改变着传统行业的营销模式
依托云计算,运用大数据,互联网正演绎一场大变革。从互联网企业做电商重塑传统零售业,到冲击金融业,再到如今逐渐渗透到各行各业,大数据正改变着传统行业的经营模式。
而到移动互联网时代,面对网民浏览习惯日趋多屏终端化的趋势,当前数字广告业内已经普遍认识到大数据技术应用到精准、效果类广告策略中的价值,并加深了对大数据技术的应用。
在此条件下,大数据将会带来哪些改变?其难点又在何处?为此,上证报记者专访了2013互联网大会指定大数据营销平台AdTime的CEO付海鹏及CTO雷永华。
上海证券报:大数据除了对商业模式的改变外,在营销方面将带来怎么样的变化?
付海鹏:过去传统的营销模式是通过大量广告投入来吸引消费者,传播面广,但缺乏精准定位。大数据时代使得这一模式有所改变,通过对消费者行为的预判,我们更容易理解消费者的喜好偏好。这使得大数据下的营销对传统营销形成挑战和升级。
上海证券报:这些挑战与升级,对于诸如传统媒体将带来什么影响?会不会像大数据对部分行业如金融那样产生一定的冲击?
付海鹏:大数据使得新媒体与传统媒体的界限越来越模糊,事实上将为传统媒体带来新的商机。我们提供的是帮助广告主实现多屏互动的全新互联网投放模式。过去谷歌、百度等互联网公司基于搜索的广告模式冲击了传统媒体,在我们看来,传统媒体如纸媒拥有很多读者,纸媒一样可以成为一种屏幕的载体。
雷永华:这么来理解或许更容易,比如近期我们和某家报纸进行的合作便基于大数据的舆情分析,该报拥有大量上市公司客户,这些客户需要及时应对负面报道等各类情况,传统媒体只拥有客户,而我们却可以帮助他们更贴近客户,这便是大数据给传统媒体带来的新商机。
上海证券报:那么,你们公司是如何具体运用大数据开拓新型营销模式的?又是如何获取数据的?
雷永华:我们还提供用户行为的分析、竞争产品的分析,均是基于与有数据的公司合作,如目前我们与广电网等各大运营商合作。作为运营商,他们拥有大量数据,但运营商最为迫切的是,这些数据如何转换成流量?我们通过他们提供的数据分析流量,并为它们变现流量。竞争产品分析也恰恰切合了企业了解竞争对手的需求,这些都是大数据下的创新模式,而传统的营销企业并不具备。此外,我们还可以基于大量数据提供各类品牌营销。
现在广告行业对大数据技术的应用还不够,要在技术上进行深耕,数据挖掘是难点,最后才是借助大数据去创新广告模式。
上海证券报:你们公司在数据挖掘上遇到何种困难?又取得了什么突破?
付海鹏:AdTime将不同网络的基础数据进行关联分析,形成针对不同行业的维度关系,并通过对不同行业特有的数据行为以及终端覆盖的特点,为主流行业客户提供有针对性的多屏广告投放策略,并在投放过程中提供多种丰富的广告形式。
其实在互联网时代,数据的获取已经变得相对较为容易,研究分析挖掘成为至关重要的课题。
举例来说,对于传统企业而言,拥有数据,却不知如何分析,比如分析偏好等普通数据已成为一道门槛,虽然我们在这一点上已经实现,并成功吸引了很多广告客户,但难点在于,我们还期望更精准的定位,如哪个用户在什么时间,正在使用哪种屏幕,是PC屏幕,还是电视屏幕,还是手机屏幕?真正做到及时推送这一点目前还处于探索之中。
雷永华:我们这种及时推送叫做“时间营销”,就是通过大数据技术手段及时响应每一个网民当前的需求,让网民在决定购买的“黄金时间”内及时接收到商品广告,进而提升广告被关注的程度和广告的成功转化率。时间营销包含了多屏营销,因为你需要知道什么样的客户何时在使用哪类客户端,这对于大数据的分析是挑战也是机遇,因为用户普遍反感野蛮式推送广告,那么时间营销就成了用户体验的必然选择。
付海鹏:这是可以通过点击率来判断的,我们投放的广告,客户打开的链接都有我们ID,通过这个ID便可以知道是否是由我们的广告而变成点击率。若用户注册进而消费了,那也很容易就知道了,这也是大数据时代营销的最大魅力,客户可以量化效果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12