京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 智能交通如何发展
城镇化和汽车普及进程的加快,不断加剧各大城市的交通供需矛盾,交通安全、交通拥堵及环境污染成为困扰我国交通领域的三大难题。统计显示,截止2015年年底,全国机动车保有量达2.79亿辆,机动车保有量超过1000万辆的有12个省,城市汽车保有量超过200万辆的有11个城市,其中北京超过450万辆。北上广一线城市卡口点位数量超过3000个,中等城市大多在1000个左右。同时,随着城市卡口密度的增加,卡口联网与信息共享趋势加速,数据量将大幅增长,将形成更为庞大的交通大数据。
智能交通行业需要在视频监控、卡口管理、电子警察、交通信号控制、交通流量、交通诱导等多方面进行规划和设计。在以往的建设中,往往是基于经验或一些基本数据进行规划设计,建设后不能达到令人满意的水平。因此需要及时、准确、快速地获取交通数据,并由此构建交通大数据平台,对交通流量、交通信号、车辆大数据等诸多体量巨大(Volume)、数据类型繁多(Variety)、价值巨大(Value)、需要高速处理(Velocity)的大数据进行全面融合汇总,并进行多角度精准分析,多层次关联处理、多样化汇报展现。
1. 智能交通行业的发展
总结近10多年智能交通行业的发展,我们发现城市智能交通发展是信息化发展的缩影,从信息化、系统化向智能化发展,可以大致归类成三个阶段:
基础建设阶段
城市智能交通的发展,处于首位的是必要的交通基础设施建设。例如市中心区域主干道的交通信号自动控制设备的覆盖,干线协调系统的搭建;主要干道的交通视频监控;重要交叉路口、路段数字化执法设备的建设等交通基础设施,以及此类集成子系统的中心后台的搭建。对于个别子系统会进行简单的小范围系统集成应用,如道路监控与电子警察的系统集成等。
此阶段主要是缓解城市路网和车辆的供需矛盾,提高交通通行能力,减少城市中心区的交通负荷。
提升管理阶段
在基本的基础建设完成后,随着日益增加的城市交通需求,使得交通管理系统必须尽快提升自身的管理水平。首先扩大基础设施建设,例如多区域交通信号的联网覆盖,城市点、线、面交通路段信号区域协调控制等;增加完善信息集成子系统;然后进行大型综合系统集成应用,多个子系统协调联动,从而提高管理效率和水平。 此阶段主要是完善各子系统,提高各系统使用效率,提高业务管理水平,缓解城市人车路之间的矛盾。
在解决了城市交通综合管控、交通安全保障后,交通信息服务的搭建将会成为一个能切实服务于公众的建设工程,此阶段需要将各应用领域的资源进行汇聚融合,构建智能交通大数据平台,对各类交通数据进行挖掘、共享、融合、应用,并且完善服务体系,提高政府服务水平。
此阶段主要是在智能交通系统建设后,综合利用各种先进技术,如云计算、大数据,互联网技术等服务民众。
由于我国智能交通行业发展的复杂性,三个阶段的特征同时存在。但总体来讲,普遍存在的情况就是:缺乏通过大数据分析技术深度挖掘海量数据中的潜在规律和线索,不能充分挖掘和分析各类道路交通信息,缺少道路动态交通路况、交通事故、交通违法智能分析的能力,不能更好的将智能交通大数据用于交通管理。
2. 大数据对智能交通的影响
何谓大数据,不论是4V还是5V,都仅仅从数据的特征纬度提出了大数据的概念,并没有提高到应用的层次来解释大数据。大数据不仅仅是一个采集融合、管理分析、处理展现的数据集合,更是采用新技术流程优化、深刻洞察、智能分析决策的以适应海量、高增长、多样化的信息资产。
大数据对于智能交通有哪些影响呢?
我们可以先看一个比较突出的问题:近年来,各地大规模上了交通管控系统之后,尽管交通违法情况得到了遏制,但是交通拥堵的情况却并未减少。从以往的经验来看,主要原因之一就是 “重建轻用”。因此对于缓解交通拥堵,要从管理应用上入手。这其中能产生有效效果的就是利用交通大数据的应用了。
大数据采集与存储
交通数据采集的范围、广度和深度急剧增加,数据量随着智能交通系统建设规模不断扩大。以线圈、视频检测、微波、卡口、GPS、浮动车等产生交通流监测数据、视频监控数据、系统数据、服务数据等构筑了交通大数据。以上海市数据为例,全市接入6600多个卡口,每天近8000万的通行数据,产生大量的视频、图片和通行记录。利用二次识别技术,对车辆图片和视频进行分析,形成更准确的数据资源。
大数据分析与应用
高效的云计算能力,带来千亿数据的秒级返回的检索能力,为大数据分析应用,提供了快速的保障。基于深度学习的智能分析算法,为大数据分析应用提供有力的工具。交通大数据的分析,为交通管理、决策、规划、服务以及主动安全防范带来更加有效的支持。
利用大数据技术,结合高清监控视频、卡口数据、线圈微采集波数据等,再辅以智能研判,基本可以实现路口的自适应以及信号配时的优化。通过大数据分析,得出区域内多路口综合通行能力,用于区域内多路口红绿灯配时优化,达到提升单一路口或区域内的通行效率。如根据平日/节假日,早、晚高峰/其他时段,主要干道关键路口/次关键路口/普通路口,白天/夜间等不同情况,人工或系统自动设置不同的配时,达到大幅提高区域内交通通行能力。
大数据分析研判功能,还可以支持对卡口数据、视频监控数据进行二次识别,提高车辆信息的准确性,进而利用大数据实现轨迹分析、落脚点分析、隐匿车辆分析等功能。对车辆大数据进行深入挖掘,实现事前全面监控、事中及时追踪、事后准确回溯的不同场景需求。常州市建设的车辆大数据平台,协助有关部门每天自动发现套牌车辆10余起,再根据车辆的轨迹分析和落脚点分析,快速找到套牌车辆进行处罚管理。
结合智能算法,二次识别等功能,可以更准确的识别车牌、车身颜色、车型、车标、年款等特征,并且对遮阳板检测、安全带检测、接打电话检测、司机人脸识别等进行分析。
利用智能交通的管理系统,可以获取道路天气、施工情况、事故情况、结合大数据分析,为出行司机和交管部门提供天气、路面状况、事故易发地点、停车场等信息,并根据车辆目的地、行驶习惯,路面情况推荐行驶路线。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05