京公网安备 11010802034615号
经营许可证编号:京B2-20210330
购买数据分析解决方案?供应商需要回答好这10个问题
选择正确的数据分析平台是至关重要的。毕竟,你所选择的产品,是要帮助公司高层做出未来几年正确的重要决策。但数据分析产品的购买中会遇到各种问题,甚至是判断失误,但以下10个问题,是需要在购买过程尽早向数据分析提供商提出来的,这10个问题将确保你的采购一开始就走在正确的道路上。
1.我能提出问题吗?
听起来似乎很基础,但能否简单地提出和回答新问题,而不是被限定在预设问题集中,是关乎厉害的根本问题。
如果被限制在对部分数据的预设视图中,想问个新问题都得让IT部门劳心劳力拿出复杂的代码塞进去,那这个分析工具就没多大价值。世界那么大,预定义了还有什么意思?
2. 你们在我这一行有些什么经验?对我的具体业务熟悉吗?
精于分析并不足够。领域内的专门知识才是从分析产品和服务中获取最大价值的来源。你的分析提供商具备特定于行业的数据模型集吗(例如:消费产品、银行、保险公司等等)?
对每一个行业而言,想得出分析数据,可视化结果,开发产品,都需要对特定行业的业务问题十分熟悉。没有这点底蕴,连自己衡量的数据是什么,为什么要分析它们都不知道,又怎么能拿出关键业绩指标(KPI)框图和底层的支持数据模型呢?
3. 人们会想用它吗?
分析解决方案要能够回答你的问题,但使用它们一定得是个愉快的体验。就像每一个部署过新产品的人所知道的,让用户实际用起来,才是战役的真正攻坚部分。
历史上的每一个专业系统都苦于人们不愿使用的困境。回答问题得有用。你希望用户沉浸进去,觉得问问题是个很棒的体验。只要直观、好用、有效,人们就愿意花更多时间在这上面。
4. 这工具的能力极限在哪儿?
支持的并发用户数量有多少?用户数、账户数、网站数的上限是多少?响应时间有多长?
这与大规模使用时的性能相关。得确保该工具能适应业务增长的规模和速度需求。
5. 对我的所有数据都适用吗?
公司企业在很多地方都有数据:云、本地、数据仓库、Excel电子表格、Web日志等等。这款分析工具能不能处理公司所有的数据?数据类型可是会有结构化数据、非结构化数据和半结构化数据哟~
有些工具要求在分析前转移数据,或者将数据导入工具自有的系统。公司的当前数据,未来几年可能会处理的数据,所有这些数据,这款工具都能支持吗?
文本、音频、视频,都能分析?并非每个提供商都跨入了大数据领域,其中一些只针对某个特定数据集有分析处理能力。
6. 你们有能处理不同业务部门分析需求的工具吗?
比如说,你们的工具能提供客户、供应链计划、分发效率、情景计划和建模等等业务的360度视图吗?对这个问题的回答显示的是工具的跨域使用广度。
7. 你们的计价模式是建立在结果和价值上的吗?
获得数据,只是分析旅程的第一步。成功的分析项目,是要求结果和传递价值的。
你们以前有签过价值计费(VBB)协议吗?如今每家软件公司的产品都在被拿来跟开源项目比较。你得拿出相应的结果,人家才会愿意给你砸钱。
8. 都是什么客户在用你们的工具?他们怎么用的?能给个参考么?
信任,但要验证。没有高管会把自家公司当小白鼠。
必须得是成熟的技术,这就是实例参考的意义所在——验证核实。
9. 你的软件里都内嵌了些什么安全特性?你怎样保证个人信息的安全?
数据安全和数据管理非常重要,尤其是在航空航天等管制行业,这都是有法律严控的。医疗保健和生命科学这类监管行业中,个人可识别信息(PII)和受保护的健康信息(PHI)是要进行模糊处理的。
10.你们的产品路线图如何?你们将怎样帮助客户进行版本升级和产品迁移?迁移和切换进程是怎么管理的?你们有用户培训计划吗?
分析解决方案通常都要用上好几年。与其他软件和解决方案一样,分析解决方案也不会一直保持不变。你得了解提供商的软件开发生命周期、产品改进和变更管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12