
大数据改变世界的五种方式
随着电脑科技的发展,计算能力不再是像以前那样的“奢侈品”。现在的我们就彷如畅泳在一个巨大的数据水库,而这个数据库包罗万象:从繁忙时段一个明尼苏达州小镇的表现至在也门成功使用无人飞机轰炸的可能性。大数据的到来意味着公司,机构以及政府等可以同过收集,挖掘并利用这些庞大的数据区完成神奇的事情。
让我们看看神奇的大数据如何改变世界:
信息作为大数据时代最有效最具杀伤力的武器同时也正在被大量用于该时代的军备竞赛,但现今的军事技术数据来源正受限于卫星,无人飞行旗以及更多传统方式得到的数据。美国国防部启动一项名为XDATA的方案,其作为奥巴马政府发布的大数据倡议的一部分主要致力于以2.5亿美元研发一个分析大数据的系统。随着越来越多的有效运算,美军能够将PB级的数据运用到尖端优势上,例如让无人轰炸机变得前所未有的智能以及致命。
除了让捕食者无人机更有威力和增加零售利润外,大数据更能造福世界。以开源的大数据平台Google Earth引擎为例,研究人员可利用它绘制出第一张莫斯科森林的高分辨率的地图。如果仅利用传统的电脑计算方法绘制需要3年时间,对比之下使用Google Earth仅需一天时间。
像这种大规模的数据集合能够让人类在系统层面上理解生态危机。我们知道越多地球生态系统以及天气形态变化数据,就越容易模型化未来环境的变迁,因而也能够在我们力所能及的时候去阻止不好的转变发生。
消费者的购物趋势能够在以前的购物记录大数据挖掘中得出,销售公司不论大少均有可能预测到你需要买什么,他们甚至比你自己更懂你。因而从消费者当前购物数据中从大数据中能够获得大利润。网上零售商如亚马逊正在大量收集我们的购物以及网上购物数据,甚至线下零售商也开始紧跟这一趋势着手收集消费者的消费数据。一些聪明的公司看准这点,以RetailNext为例,它是为Brookstone 以及American Apparel等公司提供购物者浏览以及购物时的录像记录。 RetailNext将一个购买者在店铺移动的轨迹转化为上万数据点,就可以得到购物者在店内浏览商品的移动过程,停留点以及其与销售的相关性。
一直以来数据都是科学发现的支柱,现在由于大数据的发展以及高运算力的支持,科研步伐也正飞速向前。
以人类历史上科学成就指标性的 人类基因组计划为例,当时花费达30亿美元,耗时13年才完成大约含25000个基因的人类基因组测序及分析。若应用当代先进的数据收集分析方法,使用一个如U盘大小的装置区完成这项工作仅需几小时就足矣,其花费也仅仅是1000美元。
你也许只是从大“据”考虑,但是这句格言不再像以前一样好用了。若说大数据与广度攸关是正确无误的,但是深度对大数据来说也是同等重要的。
网络巨头如Facebook和Google不单单积累了广度上的数据—大量的用户(FB拥有9.55亿用户),他们对深度上的数据–用户(使用网络的)数据也了如指掌。譬如,他们知道你搜索的内容,你点击了什么页面以及你认识什么人。最大的网络大鳄拥有足以让他们无所不知的大量的数据。
在这里的技术力量,文化进步和利润的相交之处,有一件事是确定的:数据越大责任越大(蜘蛛侠中枪)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10