
大数据的关键不是“大”,而是你真的需要它吗?
诸如我们听到的、看到的和正在自觉或不自觉地参与的,大数据已成为一项大工程,它无处不在。我们对待它就像在迎接自己的终生伴侣,兴奋之情溢于言表。每个人都在想:“嘿,大数据时代来了,我能从中得到什么好处呢?”从社交媒体、初创公司到北京的中关村,人们都在研究和部署大数据。
但是,正如前面我们提到的,大数据不是无源之水,你需要一个充足的理由来为它打开大门,让它进入你的世界;同时,你还需要为此付出不菲的代价。大多数公司缺乏预算,它们花不了大价钱来部署大数据技术解决方案,也请不起相关团队和大数据工程师。
大数据首先是一项产业,根据一份报告显示,2012年大数据带动了全球近300亿美元的IT支出,预计再过4年这个数字将超过2500亿美元。还有许多新兴国家难以预料的市场空间没有计算在内。要知道,这几乎是一个中等发达国家的全年国内经济总产值了。
那些使用大数据的辉煌案例到处都是,但距离某些特定人群总是如此遥远。比如,脸书的推广人员骄傲地说,他们每天要存储大约100TB的用户数据;美国国家安全局(NSA)每天要处理约24TB的数据。惊人的数字!确实令我们印象深刻。可是处理这些数据所需要的成本是多少呢?根据一项公开资料显示,NSA需要为45天的数据存储服务支付超过百万美元的费用,这个成本还在继续增加。在我几年的走访中,大多数公司的CIO也对我说,他们的预算支付不起大数据部署的成本。
所以,这是昂贵的门槛——公司如果想获得大数据服务,第一件要解决的事情就是提供充足的财务预算。
没钱?对不起,这不是卖白菜,也不是批发廉价商品或请几个经理人那么简单。因此我经常听到人们抱怨:“大数据太贵了!”个人和企业都在仰天叹息,但同时又充满渴望。问题是,你真的需要它吗?
数据存储和处理的成本如此之高,成本变成了阻碍每一个人拥抱大数据的最大障碍,就像其他一切新生事物一样。以至于我们普通人——中小企业需要寻求其他的解决方案,让规模较小的公司和个体不被“大数据”拒之门外。
方案一:大数据的关键不是“大”。
大数据就一定“大”吗?虽然全球最大的科技公司都需要和PB级规模的数据打交道,它们当之无愧地成为对海量数据处理达到星级服务的用户。然而,我们的研究也表明,另外有95%的公司通常只需要使用0.5TB到40TB的数据,甚至更少。
脸书和NSA的故事并不能拿来作为普及版案例,它们不是常态。事实是,大公司的方案没有必要成为中小公司效仿的版本。在全美有5万多家公司的员工只有20到500人,它们大部分都有解决数据问题的需求,但它们并没有向脸书和NSA看齐,去建立一个成本高昂的数据帝国。
所以你看到,大数据市场最大的需求并不是那些居于世界前500强的大公司,而是排名在500到5万之间的公司。我们为何只关注那些极少数的例外,而忽视了普通的需求者呢?
将自己排除在PB级规模数据需求的用户之外,我们才有可能找到真正的方案。当大数据向我们走来时,我们应尽可能选择一个较小的接口,一样能享受同等的服务和便捷。
方案二:确定你是否真的需要它。
在向人们普及大数据时我经常在想,如果我们改变了大数据的定义,会发生什么?换一个角度,用更宏观的思维来思考它,你就能够跳出来,站在自我需求的角度去进行思考。
我们不妨这样考虑:“大数据是一种主观状态,它描述的是一个公司(个人)的基础架构(现状)无法满足其对于数据处理的需求时的情形。”
从某种意义上来说,这个判断是“灰色”的,可能没有人们想象的那么灿烂美好。没有需求就不需要大数据。不过它更贴近事实:不是所有人都必须与大数据时代接轨,当你看到它扑面而来时,你要做的第一件事是确定自己是否真的需要它,然后再采取恰当的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10