京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的关键不是“大”,而是你真的需要它吗?
诸如我们听到的、看到的和正在自觉或不自觉地参与的,大数据已成为一项大工程,它无处不在。我们对待它就像在迎接自己的终生伴侣,兴奋之情溢于言表。每个人都在想:“嘿,大数据时代来了,我能从中得到什么好处呢?”从社交媒体、初创公司到北京的中关村,人们都在研究和部署大数据。
但是,正如前面我们提到的,大数据不是无源之水,你需要一个充足的理由来为它打开大门,让它进入你的世界;同时,你还需要为此付出不菲的代价。大多数公司缺乏预算,它们花不了大价钱来部署大数据技术解决方案,也请不起相关团队和大数据工程师。
大数据首先是一项产业,根据一份报告显示,2012年大数据带动了全球近300亿美元的IT支出,预计再过4年这个数字将超过2500亿美元。还有许多新兴国家难以预料的市场空间没有计算在内。要知道,这几乎是一个中等发达国家的全年国内经济总产值了。
那些使用大数据的辉煌案例到处都是,但距离某些特定人群总是如此遥远。比如,脸书的推广人员骄傲地说,他们每天要存储大约100TB的用户数据;美国国家安全局(NSA)每天要处理约24TB的数据。惊人的数字!确实令我们印象深刻。可是处理这些数据所需要的成本是多少呢?根据一项公开资料显示,NSA需要为45天的数据存储服务支付超过百万美元的费用,这个成本还在继续增加。在我几年的走访中,大多数公司的CIO也对我说,他们的预算支付不起大数据部署的成本。
所以,这是昂贵的门槛——公司如果想获得大数据服务,第一件要解决的事情就是提供充足的财务预算。
没钱?对不起,这不是卖白菜,也不是批发廉价商品或请几个经理人那么简单。因此我经常听到人们抱怨:“大数据太贵了!”个人和企业都在仰天叹息,但同时又充满渴望。问题是,你真的需要它吗?
数据存储和处理的成本如此之高,成本变成了阻碍每一个人拥抱大数据的最大障碍,就像其他一切新生事物一样。以至于我们普通人——中小企业需要寻求其他的解决方案,让规模较小的公司和个体不被“大数据”拒之门外。
方案一:大数据的关键不是“大”。
大数据就一定“大”吗?虽然全球最大的科技公司都需要和PB级规模的数据打交道,它们当之无愧地成为对海量数据处理达到星级服务的用户。然而,我们的研究也表明,另外有95%的公司通常只需要使用0.5TB到40TB的数据,甚至更少。
脸书和NSA的故事并不能拿来作为普及版案例,它们不是常态。事实是,大公司的方案没有必要成为中小公司效仿的版本。在全美有5万多家公司的员工只有20到500人,它们大部分都有解决数据问题的需求,但它们并没有向脸书和NSA看齐,去建立一个成本高昂的数据帝国。
所以你看到,大数据市场最大的需求并不是那些居于世界前500强的大公司,而是排名在500到5万之间的公司。我们为何只关注那些极少数的例外,而忽视了普通的需求者呢?
将自己排除在PB级规模数据需求的用户之外,我们才有可能找到真正的方案。当大数据向我们走来时,我们应尽可能选择一个较小的接口,一样能享受同等的服务和便捷。
方案二:确定你是否真的需要它。
在向人们普及大数据时我经常在想,如果我们改变了大数据的定义,会发生什么?换一个角度,用更宏观的思维来思考它,你就能够跳出来,站在自我需求的角度去进行思考。
我们不妨这样考虑:“大数据是一种主观状态,它描述的是一个公司(个人)的基础架构(现状)无法满足其对于数据处理的需求时的情形。”
从某种意义上来说,这个判断是“灰色”的,可能没有人们想象的那么灿烂美好。没有需求就不需要大数据。不过它更贴近事实:不是所有人都必须与大数据时代接轨,当你看到它扑面而来时,你要做的第一件事是确定自己是否真的需要它,然后再采取恰当的行动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27