
大数据无疑是现在最引人瞩目的词汇。但是,谁坚持认为可以从这项技术中获利——而且如何获利?
过去10年中,在经历了通信业和投资银行业的几个早期大数据项目后,我总结这个新兴技术最适合用在像股票市场和供应链这样的复杂系统中,获得更精准的解析。尤其是投资银行,这是最先采用大数据分析的行业之一。毕竟,那些专职赚钱的高管们热衷于省钱和创造财富。
在投资银行,为了更准确的推荐投资或买入股票,需要处理的文档(比如新闻、资产负债表等)数量太大而不能全人工处理。因此,合伙人倾向于简化分析过程,使用电子表格文档去完成大多数工作。而采用大数据技术处理大量信息可以有效性的降低风险,和以前相比,公司可以更好的进行分析和预测。
公司如何运用大数据赚钱呢?
通过大数据平台,股票市场的交易员和投资组合证券d经理可以处理大量的非结构化数据,来识别最值得投资的公司。
非结构化的公众信息,包括公司新闻、产品评论、供应商数据和价格表变更,可以以大数据的形式进行整合并建立数学模型,帮助交易员决定买入或卖出哪支股票。
一些按照上述方式运用大数据进行投资预测的企业,为了减少项目的前期投入使用云服务,比如Amazon的网络服务(AWS),从少量的服务器开始,获利后再扩大规模。我认识一个从大型投资银行辞职的定量分析师,他可以在6个月内、用有限的资金创建一个可盈利的大数据交易系统。
甚至在制造业,使用大数据可以提升预测能力。一个我曾经担当顾问的欧洲主要汽车制造商,建立了一个内部系统进行钢铁价格的可行性分析,确定在最合适的时间、以更优惠的价格购买原材料。该系统采用开源Java框架Hadoop,整合多个供应商的数据库、总量达到15Tb的信息,两年节省了1.6亿美元。
该项目成功的两个原因是:首先,该公司有足够的信息对所有供应商进行建模;其次,该项目节省的原材料成本大大超过了建立系统的费用。
公司如何运用大数据赔钱呢?
但是,不是每个大数据项目运用这种方法都会成功。有时,公司运用大数据,赔钱和赚钱的概率相差无几。大数据失败的早期情况并不相同,但最普遍原因如:
开始时步子迈得太大:大数据不需要大预算。如果怀着投资多等于回报大的想法开始一个项目,往往会失败。在项目开始前,明智的做法是,分析在该技术上以有限的投入、在小范围内是否可以带来预期的收益。如果是,该项目随时可以扩大规模,保证规模越大利润越高。
低估人力需求:开始实施系统前,问自己一个简单的问题:没有恒定的人力支持,该大数据项目能够运作吗?如果答案是“不”,那么马上停止。建立一个不能以盈利模式进行维护的系统,意味着数百万的损失。
尝试推进自然语言处理:大数据的一个潜在承诺是,通过自然语言处理(NLP),将各领域的数据变得可读可写。这种想法是令人兴奋的——但在实际应用中没有进展。目前的自然语言处理有严格的限制,因为人工智能还不够先进——再过10年也可能不行。
现代大数据意味着可以节省费用,和过去的数据处理器相比简直是魔法。但在最初建立大数据项目时判断是否真的可以盈利,将不会浪费你的时间和资源。只有傻瓜才会冒进。
数据科学家Marco Visibelli从IBM辞职后创立了Kuldat公司,该公司运用大数据,对销售和市场前景进行可行性分析并呈现可能的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04