
大数据给银行画了一张怎样的蓝图?
比尔·盖茨曾说:“世界需要的是银行服务而不是银行本身。”在“互联网+”时代,搅动银行业的互联网,除了带来互金业务,还带来了以大数据、云计算为核心为新工具。而这些工具,无疑正在颠覆银行的面貌和模式。
比尔·盖茨所言得到了印证,不过,银行也早已意识到了银行服务的永恒性,积极转型,正在进行的“三转型”:
1.经营模式从“以产品为中心”向“以客户为中心”转型;
2.营销模式从“粗放营销”向“精准营销”转型;
3.服务模式从“标准化服务”向“个性化服务”转型。
可以说,每一项都与大数据息息相关。
围绕“大数据”的课题,重庆银行目前正在打造自己的“大数据金融实验室”,并且拉来了具有大数据专业技术背景的数联铭品,以及具有丰富集团资源和多元化场景资源的知名上市公司成都三泰控股集团股份有限公司,构建起“互联网+金融+大数据”的合作模式,试图挖掘大数据更深层次的价值。
大数据是银行业务开展的发动机
大数据对于商业银行的重要性已经不言而喻。作为现代金融信用创造的基石,大数据成了传统银行与新兴"互联网金融"更加重视的宝藏。
然而,大数据在国内的发展其实只是处在初始阶段,以前不可搜集的信息变成“可搜集”、且搜集的成本大大降低的阶段,还不能做到完善而真实、甚至能够作为一套可供独立分析数据模型的程度。
以互金公司为例,单纯的依靠互联网信息去构建一个比较完整的、作为机构判断和决策的公司有点不靠谱,这也是为什么P2P公司既不能有效解决融资成本,又不断曝出违规和跑路事件的原因。
而对于传统银行与互联网公司而言,都希望借助大数据创新更多业务,从而满足客户的更多需求。然而,由于两者的“出身”和成长环境,以及由此所养成的“性格”差异,所以,必须要去寻找第三方、第四方数据去进行补充和匹配,才能够进一步判断这些大数据的准确性,因此相互合作补充成为一大趋势。
从这个角度看,对于大数据建设而言,重庆银行、数联铭品及三泰控股三者形成的“铁三角”关系,使得数据链条更稳固,也更可持续。
首先,看重庆银行方面。其实与线上数据相比,银行手中掌握的信息相对更全面和准确。银行出于监管,法律与保护客户利益的需要,保存客户大量的交易流水,并通过客户对本行持有产品的使用、信贷情况、投资理财表现,对客户更了解。而且,银行既有数据和客户通常具有高价值的金融属性,因此可以看出,重庆银行在三人关系中,可以提供高质量的数据。
再看数联铭品,其是行业领先的大数据金融风险管理专家,拥有强大的数据科学家团队和金融专家团队,更有基于大数据的风险管理应用研发能力。与淘宝、天猫累积用户数据不同,数联铭品是企业数据方面的专家,他们正在全面打造创新型小微信用风险大数据评估云平台,而这也与重庆银行关注小微企业的方向不谋而合。
而合作的第三方三泰控股,则带来了更为安全的软硬件。三泰控股长期致力于为银行客户提供专业的金融自助设备、金融安防服务、金融服务外包和软件技术开发集成服务。
三方在大数据方面都各有优势。对于重庆银行而言,组建这样的团队,对其开展和创新业务提供强有力的支持。
大数据战略实施要有立足点
都在讲利用大数据,尤其是新兴的互联网金融机构,把大数据当成了创业创新的故事主角。然而只有极少数公司已形成清晰稳定的盈利模式,并具有长期可持续发展能力。与此相反,一批又一批表现亮眼、获得若干轮融资的应用软件最终无疾而终,还有大量正在存续的公司,尚处在赔本赚吆喝找投资者接盘的状态。
为什么会如此?原因其实很简单,这些企业被束缚在了大数据的硬币两面——数据大,也意味着利用起来难度更大,一些企业犯了胡子眉毛一把抓的毛病,对其无从下手。
而从当前的经验看,场景化或许是输出大数据宝藏的通道。一如三泰控股在“铁三角”关系中,不仅是安全卫士的角色,缘由是其积极布局社区服务平台,成功打造了“速递易”、“金惠家”、“金保盟”等社区流量入口,初步形成社区商业大数据生态体系,构建了丰富的商业场景和特色化的社区生态雏形。
这或许是重庆银行及其合作方更为看重的资产。重庆银行及其合作方已经把搭建“社区生活金融服务平台”作为主攻方向,而在这方面,会将以三泰控股已布局的社区为原点,围绕社区多元化的生活消费需求布设交易场景,比如线上商品推广销售、线上医疗问诊、线下快递物流等,嵌入重庆银行在支付、缴费、理财、消费贷款、金融资讯等方面的金融服务资源,结合数联铭品的大数据分析应用能力,构建和运营集生活服务与金融服务为一体的社区O2O服务平台。
此外,在普惠金融的理念驱动下,三家合作方将建立“家庭消费金融服务品牌”作为下一步的工作重点。这一业务,也将应用大数据分析金融消费者的行为特征,研究以家庭为单位的消费群体,尝试家庭数字画像,构建家庭信用体系并探索在消费信贷领域的应用,逐步完善构建服务于家庭的综合化金融服务方案。
大数据是个宝,懂得它的人才能享受到,或许你已经收到大数据发出的邀请了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11