
大数据调研,如何实现快全准?
这个时代在快速地朝前发展,旧的习惯总是不断被新的事物改变。比如,互联网改变了人们通过报纸、电视获取信息的习惯,手机和移动支付工具改变了人们出门带钱包的习惯。
现在,又一个传统业务即将被颠覆——因为大数据时代的到来。
自20世纪初市场调查学在美国建立以来,市场调研这项业务已有百年的历史。百年来,市场调研以实证数据和理性分析为基础做出的分析报告一直是企业决策的重要依据。
20多年前,宝洁进入中国市场,将这个在当时较为先进的市场分析方法和策略引进中国。于是,一大批与此相关的公司和团队涌现。据不完全统计,目前全国有超过3,000家调研机构。
那么,调研机构一般如何形成一份调查报告呢?举个例子,某品牌希望了解新产品上市后吸引的客户对象是否符合预期,调研机构接到任务后便开始设计调查问卷,一份问卷包含大约20个问题(如果问题太多,调查对象是会翻脸的),而性别、年龄段、家庭收入这些基本情况却占据了问题的大半;接着派大量的人进行拦截访问或电话访问,一份2,000人的问卷样本通常需要三个月才能完成。
这就是商业获取信息反馈的传统方式,耗时久,效率低。在分秒必争、唯快不破的商业世界里,低效是不被忍受的。事实上,新的更高效的调研方式已经出现,那就是大数据调研。
最新的大数据调研方法通常有三个步骤:获取样本—选取标签—得到结果。
- 通过线上或线下的数据采集方法得到目标人群的样本ID(如新品上市预订的手机号),或是通过Wi-Fi探针技术获取门店到访人群的样本,从中提取目标样本,例如新客户或高活跃度人群。
- 选择要了解的标签类目,比如性别、年龄、购买力、家住小区、职业,如果是服装类品牌还可以关注样本在服装类的购买习惯,或者是寻找异业里的最佳合作,等等。
- 得到结果。
比起传统的市场调研方式,大数据调研的优势显而易见。
一是快。大数据之所以被冠以“大”字,除了数据量大之外,还因为处理速度快。2015年底,大数据应用服务公司芝麻科技与阿里巴巴联合发布了大数据产品“观星”,这是一款可以描绘群体消费者画像的产品。“观星”将线下商业消费数据与脱敏后的线上消费行为轨迹融合,500多个标签可以精准呈现品牌或门店消费者的群体年龄、学历等基础特征及购物偏好、兴趣爱好等行为特征,还同时提供相关行业对比,为实体商业提供基于多维度分析的丰富画像报告。
“观星”在一个月内就产出50多份报告,这几乎是一家中等调研公司两年的工作量。报告的快速产出可以帮助品牌和门店及时地了解到市场变化,抓住商机。毕竟,在互联网时代,唯快不破。
二是全。大数据分析的另一个优势是让数据自己“发声”,从数据里挖掘潜在价值,我们不必知道现象背后的原因,“相关分析”能找出数据集里隐藏的相互关系网,为我们提供新的市场洞见。而这些都是传统市场调研无法获知或是会被忽略的信息。
目前,百度可以根据人的搜索行为知道你是一个待产的母亲还是两个孩子的妈妈;阿里巴巴可以通过购买记录和网购习惯猜测你是白富美还是高富帅,买东西看品质还是等折扣,韩版风还是欧美风,甚至最近是不是在准备旅行,这些都是通过不同的标签维度来刻画顾客。而与阿里巴巴、个推、Talkingdata等多个数据源都已进行连接的芝麻科技可提供超过500个标签维度,是目前行业内分析维度最多最全的,今年预期可以达到1,000个维度标签。
三是准。传统市场调研的基础是抽样分析,而大数据的研究对象是全体用户的相关数据,因此大数据刻画的用户形象更加完整和准确。而在操作过程中,机器不会说谎,不会作弊,结果更可靠。
芝麻科技CEO朱智举过这样一个例子,一家火锅店的老板利用大数据画像后发现,顾客中来自附近某小区的比例远低于预期规划,于是去做了定向的营销推广,一个月后来自这个小区的顾客比例上升了50%,也带动了整体销售提升了10%。
大数据时代已经从基本的数据量堆积进入到数据融合阶段,2015年,阿里巴巴、百度、中国电信等大数据体都分别发布了在大数据融合生态上的计划与产品,这样的融合为数据加上了活力。正如朱智所说,2015年是大数据融合的元年,因为有了融合,大数据不再是以数据规模为目标,而是做加法,因为连接是无穷尽的,连接会让每一个数据充满活力,连接使得更多的应用出现,大数据应用颠覆传统的时代在2016年开始到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07