京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据调研,如何实现快全准?
这个时代在快速地朝前发展,旧的习惯总是不断被新的事物改变。比如,互联网改变了人们通过报纸、电视获取信息的习惯,手机和移动支付工具改变了人们出门带钱包的习惯。
现在,又一个传统业务即将被颠覆——因为大数据时代的到来。
自20世纪初市场调查学在美国建立以来,市场调研这项业务已有百年的历史。百年来,市场调研以实证数据和理性分析为基础做出的分析报告一直是企业决策的重要依据。
20多年前,宝洁进入中国市场,将这个在当时较为先进的市场分析方法和策略引进中国。于是,一大批与此相关的公司和团队涌现。据不完全统计,目前全国有超过3,000家调研机构。
那么,调研机构一般如何形成一份调查报告呢?举个例子,某品牌希望了解新产品上市后吸引的客户对象是否符合预期,调研机构接到任务后便开始设计调查问卷,一份问卷包含大约20个问题(如果问题太多,调查对象是会翻脸的),而性别、年龄段、家庭收入这些基本情况却占据了问题的大半;接着派大量的人进行拦截访问或电话访问,一份2,000人的问卷样本通常需要三个月才能完成。
这就是商业获取信息反馈的传统方式,耗时久,效率低。在分秒必争、唯快不破的商业世界里,低效是不被忍受的。事实上,新的更高效的调研方式已经出现,那就是大数据调研。
最新的大数据调研方法通常有三个步骤:获取样本—选取标签—得到结果。
- 通过线上或线下的数据采集方法得到目标人群的样本ID(如新品上市预订的手机号),或是通过Wi-Fi探针技术获取门店到访人群的样本,从中提取目标样本,例如新客户或高活跃度人群。
- 选择要了解的标签类目,比如性别、年龄、购买力、家住小区、职业,如果是服装类品牌还可以关注样本在服装类的购买习惯,或者是寻找异业里的最佳合作,等等。
- 得到结果。
比起传统的市场调研方式,大数据调研的优势显而易见。
一是快。大数据之所以被冠以“大”字,除了数据量大之外,还因为处理速度快。2015年底,大数据应用服务公司芝麻科技与阿里巴巴联合发布了大数据产品“观星”,这是一款可以描绘群体消费者画像的产品。“观星”将线下商业消费数据与脱敏后的线上消费行为轨迹融合,500多个标签可以精准呈现品牌或门店消费者的群体年龄、学历等基础特征及购物偏好、兴趣爱好等行为特征,还同时提供相关行业对比,为实体商业提供基于多维度分析的丰富画像报告。
“观星”在一个月内就产出50多份报告,这几乎是一家中等调研公司两年的工作量。报告的快速产出可以帮助品牌和门店及时地了解到市场变化,抓住商机。毕竟,在互联网时代,唯快不破。
二是全。大数据分析的另一个优势是让数据自己“发声”,从数据里挖掘潜在价值,我们不必知道现象背后的原因,“相关分析”能找出数据集里隐藏的相互关系网,为我们提供新的市场洞见。而这些都是传统市场调研无法获知或是会被忽略的信息。
目前,百度可以根据人的搜索行为知道你是一个待产的母亲还是两个孩子的妈妈;阿里巴巴可以通过购买记录和网购习惯猜测你是白富美还是高富帅,买东西看品质还是等折扣,韩版风还是欧美风,甚至最近是不是在准备旅行,这些都是通过不同的标签维度来刻画顾客。而与阿里巴巴、个推、Talkingdata等多个数据源都已进行连接的芝麻科技可提供超过500个标签维度,是目前行业内分析维度最多最全的,今年预期可以达到1,000个维度标签。
三是准。传统市场调研的基础是抽样分析,而大数据的研究对象是全体用户的相关数据,因此大数据刻画的用户形象更加完整和准确。而在操作过程中,机器不会说谎,不会作弊,结果更可靠。
芝麻科技CEO朱智举过这样一个例子,一家火锅店的老板利用大数据画像后发现,顾客中来自附近某小区的比例远低于预期规划,于是去做了定向的营销推广,一个月后来自这个小区的顾客比例上升了50%,也带动了整体销售提升了10%。
大数据时代已经从基本的数据量堆积进入到数据融合阶段,2015年,阿里巴巴、百度、中国电信等大数据体都分别发布了在大数据融合生态上的计划与产品,这样的融合为数据加上了活力。正如朱智所说,2015年是大数据融合的元年,因为有了融合,大数据不再是以数据规模为目标,而是做加法,因为连接是无穷尽的,连接会让每一个数据充满活力,连接使得更多的应用出现,大数据应用颠覆传统的时代在2016年开始到来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27