
大数据分析助医院实现智能化人员配置
在这个信息化时代,我们的工作、生活方式乃至生存方式,都因为信息技术的不断应用和发展发生着深刻变革。人口和消费水平的增长都增加了对医疗机构服务消费的需求,随着老龄化的压力和慢性疾病的增加,迫使医疗机构不得不从利益层面上做出艰难抉择。
为减少重复性测试,医疗健康领域已经开始采用信息技术对看护计划和医疗助理进行优化。但在病人护理服务方面,信息技术仍然无法取代人力,就医院本身而言,近70% 的预算用于劳动力成本。护士、治疗专家和内科医生仍然不可或缺。
人力配置不当导致医疗失误
谈到劳动力成本,就不得不直面由于医疗行业逐步向商业化转型进一步增加的成本压力。我国医疗机构正在进行全面的医疗改革,持续的转型和经济压力在无形中增加了医疗机构运营过程中的成本变数。医疗机构最先想到的解决方案就是削减护士的人数,以此来降低成本压力。但如果对护士数量进行不当地削减,又会造成医疗事故、病人护理质量降低及其余护士工作超负荷等诸多问题,医疗机构甚至还需要面对由此衍生而出的,诸如员工因工作负担过重以致人员流失以及医疗诉讼等更为严峻的问题。
为解决这一问题,有些组织把护士与病人的比率作为进行人员配置的依据。早在一个世纪之前,美国要求医院接受医疗保险基金,确保 “ 有充足数量的认证注册护士、执业护士和其他人员,为需要护理的所有病人提供服务。 ” 目前加州和麻省制定了相关法律,对护士与病人的最小比率进行了规定。 2004 年,加州制定的手术室比率为1:1 ,病房比率为 1:6 。相关法律中还要求 “ 医院需保持病人敏度分级系统,必要时用来指导其他员工,将某些护理工作指定给具有注册护士执照的护士。在给护士分配护理工作之前衡量他们的工作能力并提供适当的职位, 同时将人员编制记录在案。 ”
2014 年,麻省也制定了护士与病人之间的最小比率,但该比率只适用于重症看护。另外其他 7 个州要求医院设立员工委员会对计划和员工政策负责(CT, IL, NV, OH, OR, TCX, WA) ,还有 5 个州要求有一定形式的公开和(或)公共报告功能 (IL, NJ, NY, RI, VT) 。 2015 年 4 月 29 日,众议员 Lois Capps (D-CA) 和David Joyce (R-OH) ,以及参议员 Jeff Merkley (D-OR) 引入了注册护士安全员工行动,要求加入的医疗机构需建立一个委员会,保证机构组成中至少有 55% 以上为一线护理护士,并为每个科室建立护士员工计划。
同时,相关医疗健康研究和治疗机构撰写了政策创新文件,通过对医疗文献进行评估,指出因护士与病人比率过低所造成的问题。大量研究证明,低比率对病人安全和病人恢复结果造成的诸多负面影响中,包括病人提前死亡和并发症等严重问题。
让我们回来看看全球和我国的对比情况。 根据卫生部现有标准,我国医院普通病房实际护床比不低于 0.4:1 ,每名护士平均负责的患者不超过8名。但目前临床一线的护士严重短缺,很多医院根本达不到这一标准。护士 长期处于工作超负荷、环境脏乱等恶劣状态下,人员流失严重,而这与我国日益增长的需护理群体形成严重矛盾。
信息技术能否药到病除?
综上所述,绝大多数机构会根据病人数量设置护士的编制。尽管前文中所提到的立法提供了一些设立编制的指导意见,但该比率并没有切实考虑到病人的需求。基于病人的数量进行人员编制的方式过于直接,且没有将病人的护理需求与病人诊断的相关敏感度结合在一起,更不能进一步挖掘出相关数据中有价值的指导信息。
此外,来自 HITECH (经济和临床医疗卫生信息技术)法案驱动的电子病历提供的病人数据,为病人的护理需求及所需要的员工技术进行了精确的评估。电子病历也同样应用于病人敏感评估,该评估数据也为病人及其护理需求提供了可靠而准确的评估,从而让医疗机构实现了更为精确的临床人员配置。
虽然,信息技术永远无法取代病人护理人员,但它为我们提供了一种更加智能化的方式,让这些员工可以以最有效的方式来帮助他们的病人。其他行业也可能会因为削减员工的数量导致给其消费者带来了负面的体验。但对于医疗机构行业来说,问题的严重性远远不是负面体验这么简单,因为,病人的健康和生命依赖于他们。因此,医疗行业机构只能持续地为病人提供更好的服务,别无他选。
正是因为要为病人提供更好的服务,所以医疗机构必须要保证护士免于超负荷工作以此避免不必要的医疗失误,真正实现为病人提供安全的环境。新的数字医疗信息技术,如电子病历、互联网医疗、远程医疗以及大数据分析的使用,正在改变医生、患者以及其他医疗行业相关人士之间的互动方式。依赖于最新的信息技术工具,医疗机构可以获得一种既可以满足病人需求,同时又能保护护理人员投资,更能有效地管理护理成本的好方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04