
中美两国农业大数据对比与思考
农民在实际的生产过程中每天都要做很多选择:播什么种、施什么肥、如何管理农田、病虫害如何防治等等。实际上,一套农事任务,从生产规划、种植前准备、种植期管理,到采收、销售等每一步都会极大的影响农民的生产和收益,而且它们大多数环环相扣,如果选错一步,那后果可能就是减产。相对应的农业大数据,可以从“天时、地利、人和”三方面理解:“天时”可以指实时的气象数据,降水、温度、风力、湿度等;“地利”可以指动静态的土壤数据,如土壤水分、土壤温度,作物品种信息、作物病虫害信息等;“人和”则是从人力资源给出信息,农资产品使用、农产品加工和流通渠道、农产品市场价格等等。
美国-注重大数据的精准化、智能化
在美国,一些种业巨头公司已经意识到,面对大数据时代的来临,传统行业模式也亟待转型。孟山都在前后收购和并购了Precision Planting公司和Climate Corporation公司,作为世界头号种子供应商,孟山都拥有全球最大的资源和海量产量数据,这些数据与Climate公司的气象数据相结合,可以得到种植环境区划和精细划分的品种数据,农民可以得到自己农场属于哪个种植区、什么样的种子、在什么条件下长势最好,以及更多实用的信息。而另一位种业巨头杜邦先锋公司依托其优质种质资源与研发技术,也已先行结合农业大数据推进精准农业技术。其种子部门与农场机械制造商约翰迪尔联手,给农民提供种子和化肥方面的指导。目前,无论是迪尔(Deer)公司的FramSight、孟山都(Monsanto)公司的ClimatePro或Field Scripts、先锋(Pioneer)公司的Field360,都已经是广泛使用的农业大数据系统,这些系统都与气候云(Climate Cloud)相结合,整合农民机械化农场设备的种植和产量数据,以及气象、种植区划等多样数据,可以得到较为详尽的种植决策,精准化农事生产,帮助农民提高产量和利润。
农业大数据让农民开始使用移动设备管理农场,掌握实时的土壤、温度、作物状况等信息,提高了农场管理的精确性,然而,再好的决策,也需要硬件去实施。在农业生产的过程得到有效合理利用的前提下,农田信息的管理和分析也变的至关重要。试想在大田生产中,即使相隔两三米远的两块地,土壤水分、营养情况、农作物长势也可能完全不同,过去农民并不懂得区分这种差异,会把同样品种等间距种下去。如今,通过农业大数据分析,可以得到肥力高的地方密植、肥力低的地方稀植,还可以更换合适的种子品种,而这些作业都是随着播种进行、自动完成的。合理的种植分析,可以给玉米每亩带来百余公斤的增产。因此,农业智能化下的农业机械化由此提出。美国天宝(Trimble)公司提供了整套农机作业综合解决方案“网络农场系统”,该系统能够通过无线模块发射无线网络通信连接整个农场的软件和硬件设备,从而使信息在室内电脑、农机车辆、其他终端间进行传输和处理。这套管理系统基于地理信息系统(GIS)开发,提供了全面的农业解决方案,包括对农场地图的浏览与编辑、农业产业的收益计算与管理、精准农业数据的处理与分析等。
在美国,农业大数据与精准农业概念相结合,已经应用于大部分农场并产生理想收益。通过对农业生产全过程的精准化、智能化管理,可以极大程度的减少化肥、水资源、农药等投入,提高作业质量,农业经营变得有序化,从而为转向规模化经营打下良好基础。
中国-精细大数据下的地域化
中国是典型的小农经济,人口众多,地势辽阔,土地资源分配不均。在农业大数据的发展上,早在几年前,一些IT巨头纷纷试水,联想佳沃集团布局农业三年,旨在打造农业“三全”战略-全产业链、全球化以及可追溯大数据平台。相应而生,也有一些宏观农业大数据平台层出不穷。但是,做精细化的农业大数据,却没有预想那么快。由于初始投入成本太高,中国地块分布不均、普遍偏小,农民大部分不愿意尝试。中国工程院汪懋华院士曾提到“在新疆和黑龙江有大规模农业,比较适用;但其他省份以小农业为主,要推行精准农业技术,困难不小”。
在中国的新疆、东北、山东等地,大规模农业生产相对成熟,精准农业正微掀春风;但是在全国范围内,小规模的农业生产方式以及巨大的地域差距,加上农民在生产管理上的顽固性,推广精准农业、做大数据分析依然举步维艰。做精准化的农业大数据,高投入高产出是必经之路,中国农民根本支付不起前期的高投入。美国农民大多以农场经营,人少地多,人均可有十余亩至上百亩地,土地租赁成本比中国低5倍多,这对与人均几亩地的中国农民而言,是可望而不可及的事。
目前中国精准农业主要靠示范推动产业,地域性精准化有待提升,但也有一些显著成果。例如在新疆兵团,农业综合机械化水平已经到达93%以上,卫星导航技术、小型植保无人机、变量施肥技术、自动驾驶技术等已经得到了推进。中国对于农业大数据的探索和挖掘还在起步阶段,地域化推进是关键。
无论是农业大数据,还有精准农业的应用,都事关中国的每一寸土地,在中国其推广阶段还需经历日求寸进的过程,此期间还需理智认清中国农业发展现状,合作与共享永远会是新常态,最后引用汪院士的一句话结尾:技术装备价格下降和机器是否容易安装和维护;保护性耕作是否得到广泛推广;机械燃料、肥料和服务价格所占的比重。可以效仿美国实施精准农业的经验,根据需要、经济、实用的原则进行,不必一次性有把所有的技术都全套应用。只选对的,不选贵的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29