
挖掘财务数据“金矿 BI将数据变为信息
“当国内大部分企业的财务信息系统都已经到位时,以财务软件起家的用友、金蝶等国内厂商下一步重点发展的产品会是些什么?曾经生意兴隆的财务软件厂商下一步该怎么走?BI(商业智能)成为他们继财务软件之后分得‘下一桶金’的市场契机。”Oracle咨询顾问经理鲁百年曾如是说。
BI究竟是如何将企业的“海量数据”变成有“价值金矿”?为何一贯专注于财务管理信息化的软件厂商开始钟情于商业智能?BI与财务数据存在哪些天然的关联性?
BI将数据变为信息
自1996年BI概念由Gartner提出以来,BI逐渐从“新贵”神坛走近企业管理者,成为管理层的决策好帮手。
后ERP时代,BI成为企业信息化领域的热点应用之一。经过近10年的信息化发展历程,ERP逐渐在企业普及,信息系统带来的结果之一就是由此产生了海量数据,它们存在于企业的各个角落。
来自财务部门的资产负债表、现金流量表、损益表,来自市场部门的销售数量、销售总额、客户数量,来自人力资源部门的员工工资、各项费用……大量数据以多种数据格式、多种数据种类,存在于企业的多种终端的数据库之中。
尤其是以金融、保险、电信、政务、烟草、石化、大型零售这几个领域为例,这些领域的企业有两个共同的特点:一是数据量大,二是有实力挖掘数据。
正如麦肯锡在《大数据的下一个前沿:创新、竞争和生产力》中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
问题的关键是,如何利用好这些数据,变数据为有用的信息?BI为企业的分析决策提供了一条可实现路径——BI通过对商业信息的搜集、管理和分析,使企业的各级决策者获得知识或洞察力(insight),促使他们做出对企业更有利的决策。
从企业自身的需求看,中国企业应用BI的需求日益增加。比如保险公司如何利用历史数据总结规律防范骗保?物流公司如何实时控制库存保证利润最大?航空公司如何制定价格策略才能获得最大收益?这些都是BI的现实应用。作为企业信息化应用深入的产物,BI应用越来越成为客户和市场的一个关键力量。
从外部环境看,企业面临日益复杂和激烈的外部环境竞争,决策层不再只凭拍脑袋来下决断,而是越来越希望自己的决策能得到更加准确的数据支持,以便做出更及时更精准的市场反馈。
从企业内部的信息化应用程度看,随着信息化应用的不断深入, BI的应用逐渐成为可能。 以前,BI需求多集中在银行、证券等信息化程度较高的行业;如今,BI应用需求也从高端行业走向低端行业,通用市场对BI应用的需求将越来越多。
计世资讯的一份研究报告显示,BI软件在中国用户的认知度已经接近60%,在大型企业中认知度是95%, BI已经开始在中国进入了大规模的推广和应用期。特别对于企业的中高级管理人员,BI已经成为一个重要的管理工具和战略应用。
财务背景的厂商独具优势
BI应用已经成为信息化建设的重中之重,也成为各大软件厂商的重要“战场”。日前市场上提供商业智能解决方案的IT厂商包括IBM、Oracle、SAP等。在国内,用友、金蝶也早在几年前就预测到这一市场的广阔前景,纷纷开始发力这一市场。
“财务软件起家的软件商,更容易获得企业的青睐。”作为一家专注于财务管理信息化领域10余年的专业“咨询+软件”服务商,元年诺亚舟也敏锐地意识到这一新契机,开始代理Oracle BIEE。
在元年诺亚舟看来,财务数据是最基本的、积累量最为丰富的一种数据,而企业在分析决策时首先想到的也往往是对财务数据进行分析。因此,财务数据与BI有着非常紧密的联系。
“整个财务管理系统深入到企业的各个部门,其核心是财务部门。因为财务部门要负责对企业的运作进行财务管理,比如预算的编制与执行、绩效考评等。”一位业内认识如是说。
财务数据分析的应用非常广泛。然而,一般的非财务出身的公司管理者很难看得懂公司财务报表,即使看得懂,也很难找到自己想要的数字。 对于BI的财务分析来说,主要是对一段时期的数据进行对比与分析,BI系统做出一些判断。
比如,一家公司的毛利润很高,而经营利润却比较低,管理者想知道哪个环节出了问题。如果毛利润在整体下降,那么在战略管理的BI系统中,就会有一个提示,提示公司某一个业务,其原来定义的项目生命周期是否应该做调整,是否应该开发新的产品与业务来源,公司资金的分配计划中,也许会因为这些数据的分析,需要重新进行一次调整。
管中窥豹,可见一斑。纵观国内外BI的主流厂商,几乎都是以财务软件起家的管理软件厂商。
“其实也不难理解,商业智能进行数据分析的大部分数据来自财务信息系统,而财务软件厂商又是对财务信息系统对熟悉的人。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29