京公网安备 11010802034615号
经营许可证编号:京B2-20210330
专访数据挖掘牛人:热爱大数据分析的6大原因
作为高级数据分析师人员,我是如何热爱数据分析数据挖掘的工作的,说起这件事的从我很久之前谈起对数据的热爱程度是如此痴迷。
一开始我在印度理工学院罗克分校学习工程学时,我还没有关注大数据分析。起初我还是一张白纸,把课程学得一团糟。很快我便对我的常规课程失去了兴趣,取而代之的是开始参加其他项目。我参与的第一个与处理大数据有关的活动是美国运通组织的一场竞赛。由于我对这个活动一见钟情,我甚至从事了清理数据这一差事。不久,我便沉浸在学习编程语言和编码中。今天,我很幸运地说,我找到了我的激情所在,我做的是自己热爱的事情——在Crayon data 做一名数据挖掘工程师。
我为何会宣称这是我的事业?让我来告诉你。
1.做出有根据的决定
我不是一个果断的人,我不喜欢基于自己的直觉做出决定,因为我是一个情绪化的人!一天一个样,有时候甚至完全不同。然而数据从来不会说谎。数据分析能让你做出有根据的决定。
2.学习新的(编程)语言
我常常对编程语言感到着迷,从大学期间直至现在,我一直用C和C++进行编程,但作为一个数据挖掘工程师,我需要了解更多的编程语言。目前,我正在学习R,R十分有趣。编程促使我去思索一些方法以便于去解决十分复杂的商业难题。除此之外,我还喜欢创造给人们使用的工具。只需要敲敲代码,或是按按开关,然后忽然有许多人在使用我创建的APP,这是一件十分有趣的事。我计划在学习R语言之后开始学习Python,因为这两种语言是数据科学领域里最受欢迎的编程语言。
3.深入数据库
一个数据挖掘工程师应当知道如何从数据库中查询和提取数据。当前,我使用HiveQL查询和管理存储在庞大的分布式存储系统中的数据集。到目前为止,我仅仅熟悉SQL,我还想学习更加流行的数据库MongoDB。
图:数据库受欢迎程度
4.预测分析的力量
预测分析借助了统计学、机器学习、数据挖掘和模型去分析现在和过去的数据,从而对未来做出预测。通俗地讲,预测分析给予渺小的人类一些力量去预测未来,就像诺查丹玛斯和伟大的康奈克 (但不显得滑稽)。能够预测出谁会点击,购买,撒谎或是死亡,这简直是太有意思了。
5.拥有机器学习与统计学的经验
数据挖掘是应用机器学习和统计学技术去解决一些具体的问题的领域。每一个新的项目都会涉及到不同领域。这给予了我机会,使我能够在不改变原有工作的基础上,发现和学习新的领域。我最近对深度学习有兴趣。深度学习是关于使机器进行学习的,这令我十分兴奋!
6.最重要的是,给家人和朋友留下深刻印象
数据科学家被哈佛商业视角列为21世纪最性感的职业。其中包含了近期对大数据和数据科学过多的炒作。当我告诉我的朋友们我从事数据分析工作时,他们会很好奇而且想了解更多,比如:我使用什么工具,我工作的范围,我的报酬等等。人们询问”我怎样才能从事大数据分析?”时 ,感觉棒极了。
现在,你知道是什么驱动我热爱数据分析。是的,我是一名狂热的数据分析爱好者,以后也不会改变。所有发布这类信息的文章的人们,最终都会燃起我学习的欲望,学习更多知识,让自己变得更富有创造力和创新性,尽力做最好的数据分析师。至此,我必须向他们说声谢谢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23