
数据分析决定大数据成败
近几年来,我一直在与大数据公司的高管们探讨如何解决他们所遇到的问题。一些有趣的问题仍然持续存在。很明显,我们仍然还处在对于某些问题的初步了解阶段,要充分了解并使用有效的方案来解决这些问题,我们可能仍然还有很长的路要走。
Facebook和谷歌等公司获取了大量的信息。他们普遍遭到侵犯隐私的控诉,尽管我们并不知道这些企业利用他们收集的数据信息可以计算出关于我们的什么信息内容。我们总是假设他们使用这些数据信息是对我们不利的,即使他们很可能尝试的是使用这些信息为我们的谋利益。
没有更好的保护您的数据的方案
历来,围绕着大型数据存储库的许多问题均涉及到如何管理他们。这主要是指确保那些需要访问这些数据的人员的范围权限:从管理报告到遵守一切管理的制度规范,以便让这些人员在需要访问这些数据时可以得到他们所需要的信息。这还意味着必须确保数据存储的安全。这在历史上已然成为了供应商们铁一般坚不可摧的服务准则。
上述这些历来管理数据的方法说明我们一直以来对待这些数据就像海盗的宝藏一样,只是努力寻找创造性的、廉价的方法来埋葬他们。但却没有拿出同样有创意的方案来及时分析、得到他们。
我们可以肯定的是,宝藏是确实存在的,但我们不知道其究竟在何处。甚至有些数据信息已经真的非常老了,其索引和存储往往是如此糟糕,以至于我们有时会认为如果我们当初没有将其存储着首要位置会不会更好些。
新兴的公共云资源承诺低成本的存储与未来高可能性的访问。任意数据信息宝藏资源均被一排排整齐的存储。唯一需要权衡的,当然就是,安全、管理和遵守合规性的问题。
随着数据的不断增长和企业IT预算压缩,上述这些因素的权衡似乎已经不成其为问题了。也就是说,直到犯罪分子找到获得并发布了这些数据,才会造成风险。我们的企业甚至有了风险经理的职位,但这一职位也慢慢随着金融市场的崩溃而日渐变得对于保护企业资产没有什么意义。
数据分析才是决定大数据的成败的王道
现在,我们意识到,最关键的并非大数据本身。相反,是数据和移动设备接入的分析与结果报告。企业高管们越来越多地发现,如果他们能够从他们收集的数据中得到真实的信息,他们可以做出更好的决策,避免痛苦的重复错误,并提升他们在企业乃至整个行业中的地位。
事实证明,知识就是力量。因此,今天的成功人士已然开始把重点放在更多地了解他们的客户、合作伙伴、员工和企业环境,而不再是他们的竞争对手。
新时代的企业执行人员使用工具进行更强大的数据同步。这保证了被分析的数据的准确度和及时性。他们提供移动客户端,可以在智能手机和平板电脑上显示结果。他们利用云服务,可以同时解决企业的成本和安全性的要求。
Hadoop已经成为最大的数据分析平台,供应商之间正在使用Hadoop,进行提供最好的工具的竞争。然而,随着供应商开始花更多的时间开发附属品,而不是优化整个解决方案;或选择合作伙伴时无意造成了瓶颈,这些优化可能功亏一篑。
明智地选择你企业的数据分析解决方案
最后,当我听到奥巴马总统连任的CIO分析得出结论,大数据本身的部分并不重要。为您的管理人员提供他们所需要的答案才是最重要的。
这可能听起来很简单,但它确实需要供应商必须满足下列条件:
· 具有您企业和行业方面的大量经验。
· 愿意承担整个解决方案。
· 在达到您企业的期望方面有良好的记录。
· 具有公共和私有云资源的经验。
· 有能力处理传统的数据存储和实时数据流。
总之,这不是一个自己动手做的问题。您需要有经验、有信誉、有可靠性和值得信赖的供应商。只有少数供应商能满足上述这些标准。您需要进行明智的选择。
本文作者罗布·恩德勒是恩德勒集团的总裁兼首席分析师。之前他曾担任Forrester Research和Giga信息集团的高级研究员。在此之前,他曾供职于IBM担任过内部审计、市场竞争分析、市场营销,财务和安全管理等相关职务。目前,恩德勒为各种出版物撰写关于新兴技术、安全和Linux相关专栏文章,并受邀参与美国全国性的新闻电视节目录制:包括CNBC、FOX、彭博社和全国公共广播电台。(转)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09