
2016年数据分析师顶尖职位必备的9项技能
对于数据分析师人们来说,2016年在数据行业中想获得一席之地必须掌握9大技能。
大数据,利用大数据分析工具和技术来取得竞争优势已不再是秘密。2016年, 如果你还在职场上寻找大数据的相关工作,那么这里介绍的9种技能,将帮助你得到一个工作机会。
Hadoop现在已经进入第二个10年发展期了, 但Hadoop在2014年出现了井喷式发展, 由于Hadoop从测试集群向生产和软件供应商方向不断转移, 其越来越接近于分布式存储和处理机架构, 因此, 这一势头在2016年会更加猛烈。由于大数据平台的强大, Hadoop可能是一个需要熟悉的技术人员,对于掌握Hadoop最核心技术 的技术人员在职场上的需求将越来越大。
如果说Hadoop在大数据中广为人知, 那么Spark就是一匹黑马, 快速崛起的内存计算技术被认为是MapReduce风格分析框架更快和更简洁的替代方案。Spark最佳的定位应当是大数据技术族中重要的一个成员。Spark仍然需要专业技术进行编程和运行。
大数据的操作层面, 如MongoDB和Couchbase等分布式、可扩展的NoSQL数据库正在接管市场份额极为庞大的的SQL数据库,例如Oracle和IBM DB2。在WEB和移动app层面, NoSQL数据库常常被做为Hadoop分析的数据源。
对收集的数据进行挖掘,当今大数据的世界已经达到了一个全新的高度。机器学习成为去年大数据技术最热门的领域之一, 2016年顺理成章地成为它的突破之年。大数据将会使那些能够利用机器学习技术去构建和训练像分类、推荐和个性化系统等预测分析应用程序的人成为职场宠儿。
如果有定量推理背景和数学或统计学等方面的学位,再加上一些使用统计工具经验,例如R, SAS, Matlab, SPSS或Stata, 过去许多量化工程师都会选择在华尔街工作, 但由于大数据的快速发展, 现在各行各样都需要大量的具有定量分析背景的极客。
以数据为中心的语言已有超过40年的历史了, 但是这种祖父级的语言在当前的大数据时代仍然具有生命力。尽管它难以应对大数据的挑战, 但简化了的结构化语言使其在许多方面变得十分容易。
大数据可能不是那么容易理解, 但在某些情况下, 通过鲜活的数据吸引眼球仍然是不可替代的方法。你可以一直采用多元或逻辑回归分析方法解析数据, 有时候使用类似Tableau或Qlikview可视化工具探索数据样本能够直观的告诉你所拥有的数据的形态, 甚至是发现那些能够改变你处理数据方法的一些隐蔽细节。
在类似Java, C, Python或Scala等通用语言中拥有编程应用经验能够使你相对于那些局限于分析技术的人更具有优势。具有传统应用程序开发和新兴数据分析能力的人能够自由的在终端用户企业和大数据创业公司之间进行流动。
无论在高级分析工具和技术方面优势,自主思考能力仍然是无可替代。大数据处理工具会不可避免的进行演化发展,新技术会不断涌现并替代这里所列出的技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09