京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术如何处理大学校园IT安全问题
大学高校内有一些复杂的IT基础设施,以及来自自带设备BYOD的安全风险,是高校信息中心人员无法规避的话题。世界各地的大学首席安全官员在系统日志挖掘方面,正在越来越多地转向大数据分析技术,以此来提高他们在安全基础上的应对技术。
为一所大学提供信息安全服务工作是一件不容易的任务。高校分布面积庞大,以及不断发展的分布式人口、个人设备(BYOD)……面对这样一个严峻挑战,一些大学正在转向使用大数据分析技术,以此来解决问题。
大学校园美丽风景的背后,暗藏着大量IT安全风险与隐患
得克萨斯大学奥斯汀分校,是德州大学系统的标志型学校,他们的信息安全挑战就是一个好例子。在其350英亩的校园内,拥有近200幢楼宇,全部由10个千兆光纤骨干网相连。在任何一个时间,高达120,000单个设备从服务器到交换机,无线接入点,台式电脑,笔记本电脑,平板电脑,智能手机和安全摄像机等都可以连接到其网络。
“我们与其他大学一样,有数以万计的用户以及更大的联网设备。”得克萨斯大学奥斯汀分校的首席信息安全官(CISO)比斯利介绍说,“我们有一个固定的需要,来确定用户帐户的行为异常,检测、定位和实时监测系统受损,以及多个记录环境的相关活动,以此更充分地了解大学校内用户的IT使用情况。”
得克萨斯大学奥斯汀分校信息安全办公室(ISO)的分析师主要依靠入侵检测/防御系统(IDS / IPS),定制开发的软件工具,来监察相关用户行为。但这些方法缓慢、笨重,此外,它没有充分挖掘出数据的一些价值属性。“我们希望插入到许多不同的服务器和设备下游,与我们的网络信息与实际系统的日志数据关联,来测试未来可能产生的网络攻击。”比斯利解释说,“我们不希望使用一个笨重的SIEM安全信息和事件管理产品,我们需要一个更灵活的系统,以此可以适应我们独特的需求。”
康涅狄格大学的首席信息安全官贾森也面临着类似问题。他说:“我们需要做数据的类型挖掘,另外一个就是使用不同的工具来分析。”他说,“但这只能做一个或两个技术分析。”
大数据帮助分析高校日志数据
世界各地有超过275所大学像得克萨斯大学奥斯汀分校和康涅狄格大学的类似情况。“高校有一些世界上最复杂的IT基础设施,这使得它们非常脆弱。” 某大学安全总监马克?西沃德说,“BYOD的发展在不断演变并形成安全威胁。Splunk软件可以帮助收集大量的数据,并帮助用户检测未知的和持久的威胁。”
高校用户越来越多的IT使用行为及产生的数据,需要利用大数据分析技术来提前应对安全风险
作为实时业务智能软件供应商,Splunk从本质上讲是一个大的数据索引引擎。它负责索引来自网站,应用程序,服务器,网络和移动设备产生的数据。Splunk是一个不断发展的领域,技术人员正在寻找在100线长和非结构化的Java跟踪。他们希望这一平台能够像谷歌这样灵活搜索数据。
康涅狄格大学组成一个不同类型数据的集中分析,CIO利用大数据分析来提出问题,解决问题,并显而易见取得了成绩。该技术已经帮助网络中心办公室提高了在大学范围的基础上实施反病毒的能力。在一个企业,各类日志可以集中管理,它可能是微不足道的一项工作。但在高校这里,学校CIO面对的是一个流动人口,这是非常困难的事。
但使用日志数据,大学的工作人员能够以审计环境,并观察到故障点的位置,然后生成报告,并帮助他们升级或安装防病毒解决方案。康涅狄格大学的系统安全防护能力得到了提升。技术团队用大数据分析技术,衡量八个不同加权值安全指标和反病毒程度、OS修补程序。这些实践应用到企业中,在处理与利用经验上,技术人员可以得到宝贵数据分析经验。通过大数据的分析,可以发现背后巨大的效益,CIO可以从一个单一的数据资源库中,使用IT技术来为企业决策提供数据分析能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27