京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于大数据的资金流量分析:思路与应用前景设想
传统的资金流量分析方法,主要是编制部门之间的资金流量表,“数据分析师”并据此展开分析,为宏观经济政策决策提供参考。资金流量表分为实物交易表和金融交易表, 分别统计国民经济各个部门(非金融企业部门、金融机构部门、政府部门、住户部门和国外部门)的资金运用与来源情况。通过引入大数据技术,传统的资金流量分析将面临重塑,并将成为精准宏观调控的基础。
大数据对资金流量分析的拓展与重构
大数据的应用将极大地改变资金流量分析的技术基础,拓展资金流量分析的范围,进而重构资金流量分析的内涵和外延。
首先,大数据的应用将极大地改变资金流量表的编制过程。在传统的方法下,编制资金流量表首先需要按照部门和项目逐项收集资料,然后按照国民经济核算的原理对数据进行加工,在此基础上编制资金流量表,并进行实物交易与金融交易的平衡,最后对照投入产出表、国际收支表等国民经济核算表进行校验。大数据的应用将大大简化资金流量表的编制工作。第一,编制者可以构建IT系统,根据核算原理对资金流量表中的每一个项目进行规则设定,从各类交易平台、登记平台、支付机构进行数据抓取。第二,对于不能直接统计生成的数据,可以根据国民经济核算的原理以及经济金融逻辑设置一定的核算规则或者测算规则,利用现存的各类数据计算取得。第三,利用大数据实现对资金流量信息的校验,即以其他信息,比如,利用价格、利润、税收等信息以及其他各类报表信息验证已获得资金流量数据的准确性。要实现这些应用,就要从国家层面不断强化数据治理,通过立法确定数据的公开以及不同数据资产的使用权限,确保国家宏观审慎管理部门对于数据资源的使用权。
其次,大数据应用将极大地改变资金流量核算的范围和频度。一是从核算范围看,基于大数据的资金流量表能够对传统资金流量表的项目进行明细划分,并且细分的颗粒度会越来越细。比如,对于国民经济部门能够进行更详尽的划分(远比目前资金流量表编制过程中的子部门划分更为详细);在当前尝试编制地区资金流量表的基础上,尝试编制特定市场的资金流量表;借鉴国外编制金融工具资金流量表的经验,尝试编制各类资产的资金流量表。由此,资金流量的核算范围扩展到宏观、中观、微观三个层次的流动性(微观层次的流动性意指机构的流动性或某一项资产的流动性;中观流动性,意指一个特定市场的流动性或一个地区的流动性;宏观流动性,就是整个经济体中的资金流动情况)。传统的资金流量核算是粗线条的,且微观流动性、中观流动性、宏观流动性分析难于有效衔接,借助大数据技术,不仅能够实现资金流量分析的精细化,而且可以形成整个经济体的流动性全景图。二是从资金流量分析的频度和时间范围看,传统的资金流量核算表按照年度编制(国外按照季度编制),其应用效果因编制周期过长而大打折扣。基于大数据的资金流量核算能够极大地缩短编制周期,而且能够实现时间跨度的灵活选择,不仅能够实现对过去资金流量情况的核算,也能够实现对未来资金流量的精准预测。
第三,大数据技术的应用将极大地拓展资金流量分析深度与广度。资金流量核算范围的拓展,编制周期的缩短,为资金流量分析的发展提供了基础。运用机器学习、联机分析等大数据技术,不仅能够更加深刻地分析各层次资金流量变化规律,而且能够将详尽的资金流量数据置于海量的人流、物流信息及其他结构化、非结构化数据之中,应用数据挖掘技术深入分析资金流量与各类经济变量之间的关系。
大数据资金流量分析的应用前景
基于大数据的资金流量分析必将成为未来精准宏观调控体系的核心。以下三个相互联系的层次可以解释大数据资金流量分析的应用前景。
首先,基于大数据的资金流量分析将极大地推动流动性管理的精准化。一方面,由于大数据资金流量分析可以帮助管理部门洞悉细微,从微观流动性出发,把握中观和宏观流动性,并能够前瞻性地预测流动性,因而能够提高管理部门流动性研判的精准度。另一方面,由于资金流量数据频次的提高,管理部门对流动性的敏感性日益提高,借助压力测试能够较为准确地感知各层次经济主体及各类市场面临的流动性压力,对于流动性管理的时机选择和工具选择、效果评估都具有指导作用。例如,宏观审慎管理应该针对敏感时机的流动性实施精细化管理。从金融危机发生的一些时间窗口看,与敏感的会计工作日、报表日、清算日乃至节假日等时刻有关。这些时间节点容易发生资金需求量大、利率跳升等风险触发因素、事件。针对这种情况,宏观管理部门应对重要时间节点的流动性压力进行测试,并选择恰当的工具进行预调微调。
其次,基于大数据的资金流量分析能够为金融稳定提供现实的基础。流动性与各类主体杠杆率、流动性与各类主体资产负债表、流动性与资产价格、流动性与资本流动、流动性与投入产出效率之间的互动关系,以及由此造成的经济主体资产负债表的破坏是大规模风险传染的触发原因,其中流动性是枢纽和关键。基于大数据的资金流量分析不仅为精准把握各层次流动性提供了可能,而且,"数据分析师"利用机器学习技术能够大大提高系统性风险传染预警模型的精准性,从经济金融的海量数据中寻找风险传染的可能线索,从而为防范系统性风险提供更好的基础。
第三,基于大数据的资金流量分析为宏观调控的精准性奠定了基础。几乎所有的宏观经济模型都要用到资金流量数据,传统的资金流量表核算相对较为粗糙,由此导致宏观经济模型的精准度难以尽如人意。基于大数据的资金流量表以及由此形成的应用,“数据分析师”能够从微观层面更加灵敏地解释主要经济变量及各项政策指标的趋势,为货币政策、财政政策及其他宏观经济相关政策决策提供量化依据,从而为精准调控与管理奠定了基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27