
大数据不应成为作恶的工具
牛津大学互联网学院教授维克托·迈尔-舍恩伯格曾以《大数据时代》《删除》两本看似“自相矛盾”的著作炸响了大数据的深潭,前者着重挖掘大数据的价值,而后者则指出在记忆不可磨灭状态下大数据对我们的生活造成的困扰,两书呈现了大数据的两面性。然而,在现实应用中,前者在商业及金融领域的潜在价值被不断挖掘,而《删除》中那些啼笑皆非的案例,总是被人们选择性遗忘,在大数据的裹挟下,我们正在进入被操控的“黑箱社会”。
美国马里兰大学教授弗兰克·帕斯奎尔所著的《黑箱社会:控制金钱和信息的数据法则》,分析了在互联网时代,各类数据收集挖掘企业是如何仔细检索、审视我们的生活和习惯,设置我们的生活议程,控制我们的视野范围,甚至左右社会的政治走向。帕斯奎尔可谓是向社会不公现象宣战的斗士,他曾在美国众议院的司法委员会上叫板谷歌、微软、雅虎,与他们的法律总顾问对峙。在书中,作者再燃愤怒之火,剑指这些掌握信息技术大权的互联网大鳄如何操控我们的生活,设置不平等的规则,将他人的命运甚至是整个经济社会的未来操纵于掌心。
所谓“黑箱社会”,是指在我们看不到的角落,有潜在的法则在暗暗起效,被黑色幕布遮掩之处,恰是人们的隐私、权益被暴露、利用、加工贩卖的狂欢之所。现代社会,人们已经无法查清自己被“贩卖”的次数,从第一次接到“神机妙算”的电话,到手机被各种借贷、炒房信息轰炸,再到自己被各种购物网站服务得“无微不至”,其实我们已经在大数据的牵引下,成为信息时代的透明人,是无数利益机构“精准营销”、“策略营销”的对象。
假如仅仅是商业上的“超服务”,尚在可接受的范围之类,但假如我们在互联网中留下的所有蛛丝马迹都被过度解读,无限联想,对于我们来说则可能是一场灾难。比如,A君在网上购买了一些糖尿病辅助食品,则被有心的大数据运营公司记录为“糖尿病患者”,而后他在求职过程中屡屡受挫,他始终不清楚导致他被拒的原因是他“被糖尿病”了。大数据带来的误解令我们百口莫辩,甚至年少轻狂时在网上偶发的言论都被当成“呈堂证供”。
大数据技术在给人们带来便捷的同时,也渗透进了人们生活的所有公共和私人空间,在人们完全不知情的情况下,我们的行为、特征、语言,被一遍遍计算、算计,它给我们贴上各种各样的标签,影响我们的日常生活,我们却鲜有申诉的权利。没有人能完全明了在数据的黑箱里究竟装了哪些运算法则,没有人能够在智能计算中“独善其身”。
技术秘密是大型互联网企业的万用挡箭牌,即使是在立法机构的一次次调整中,互联网企业也总能在现实的变通中,完美规避法律,毕竟没有哪个政府部门会在互联网时代拥有比企业更灵敏的嗅觉和快速的反应能力。
以书中所示的英国“Foundem”垂直搜索引擎公司来说,作为搜索领域的新生儿,简直是被谷歌玩弄于股掌之间,只要谷歌对其作出搜索降级的“处分决定”,它就难以在用户搜索关键词“价格对比”时出现在靠前的页面中,这对于一家互联网企业而言无异于灭顶之灾。只要谷歌稍动手脚,一家风光一时的企业就会在互联网中石沉大海,而谷歌想捧红哪家企业,也只要将其置顶,这家企业就会拥有源源不断的点击率。当公众质疑其搜索结果的公正性时,谷歌总会有相当多的理由以及技术秘密用以搪塞用户,只要谷歌不掀开自己的“技术黑箱”没有人知道里面究竟装的是规则与秩序,还是权利与利益。在流量为王的时代,谷歌仿若商业世界的帝王。当然,拥有这种权利的互联网企业,绝不仅谷歌一家,脸谱网、推特这些大型互联网企业在各自的领域亦有着相似的能量。
在美国的政治竞争中,互联网企业也会扮演重要的角色,它们甚至可以决定人们对这位候选人的认知度和整体印象,还可以设置话题议程,左右舆论风向,其强大的排序能力已经远远超出了其技术所应伸出的触角。一个被大型企业垄断的世界同独裁统治的世界一样是可怕的,一股缺乏有效制衡的“超力量”必然会不断地制造社会的“暗箱”,将规则与公平关进笼子里,而放出来的则是金钱与权利的欲望之火。
认清政府、大型企业之间的利益关系,更有助于我们看到很多社会问题的成因。就如同华尔街的贪婪并不能一味从金融大鳄身上找问题一样,其背后错综复杂的利益格局,信用评级机构、金融监管者及立法者之间相互缠绕的关系,才是问题的症结所在。在本书中,作者也用相当篇幅介绍了在金融领域“大数据”作恶的案例,其背后同样是人对数据的误用与滥用。
在《删除》中,维克托·迈尔-舍恩伯格曾就针对大数据带来的诸多社会病提出了以“删除”为核心,包括数字化节制、保护信息隐私权、打造良性的信息生态在内的六大对策。在《黑箱社会》中,作者继续进行了一些思路及方法上的探讨,虽在深度及广度上有所进步,可两位作者同样陷入了从揭露问题到提出希望式的书写。理论上正确的方法需要更多与现实短兵相接的能力,美好希望在现实中总会遭遇种种挫折尴尬。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08