京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创新信息化测评方法
目前信息化评测方法基本上是从传统的统计方法延续过来的,其数据主要来自两个方面:各地区政府管理部门上报数据和有关部门的抽样调查。但是,这两种数据来源对于评价地区信息化水平来说,都存在一定的问题。
政府部门提供的数据容易偏重于建设方面,如信息化建设投资了多少、铺设了多少皮长公里光纤、建设了多少数据库、存储了多少数据资源等等,这些数据只能反映政府在信息化建设上做了多少工作,而不能反映信息化的应用效果;利用抽样调查取得的数据也有问题,原因在于样本很难随机抽样、问卷设计难以规范、用户回答的随意性太大,满意度很难作为客观的评价指标。
同时,在评测信息化水平的指标选择上也存在一些问题:指标陈旧、更新不及时、跟不上信息技术环境的变化等。例如移动互联网、电子商务、云计算、物联网等应用很难纳入统计。
总之,传统的统计方式适合于纵向历史数据比较,很难适应以横向比较为主的快速变化的信息化形势。为了能够相对客观地比较各地区信息化发展水平,应当尽量使用一些计算机产生的数据,减少人为随意性带来的不确定性。因此,对于信息化的评测,需要另辟蹊径。
利用大数据方法获取数据
应当看到,地区的信息化水平并不等于信息化建设投资的规模,也不等于信息系统能够提供的功能。城市的信息化水平主要是指信息化应用的普及率、应用深度及应用效益水平。信息化应用水平,尤其是应用效益是不可控的,政府可以建设许多项目,但公众是否愿意使用则是另一回事。应用普及是公众的自主选择的结果,一项对公众帮助不大的服务,用户肯定门可罗雀,用户规模更能反映信息化建设的效果。城市信息化水平的调查重点应当是应用规模。注重最终用户效益的统计调查,有利于管理者重视整体效益,重视各方面环境的配套,也有益于智慧的城市建设。
为提高数据获取的效率、增加数据的客观性,我们应当充分利用大数据的方法对传统方法进行改进。信息技术普及到今天,很多应用数据都能够通过自动化的渠道来获取,需要选择的指标不需要太多,多则惑,少则得。GDP之所以受到人们的关注,最重要的原因就是简单。因此,信息化的评测数据也要力求简单,便于普及与推广,只要能够说明问题,指标数目少一些更好。
大数据可以有以下几个来源:搜索网站(如百度)、信用卡公司(如银联)、电子商务公司(如阿里巴巴)、运营商(三大运营商均可)以及可提供政府网站点击率、市民卡使用率的机构。这些企业与机构提供的数据都是由计算机自动生成的,没有人为干预,数据规范而客观,对于评价地区信息化发展水平是很好的参考资料。
五大参数反映信息化水平
从数据获取的难易性和客观真实性出发考虑,笔者建议利用五大“利用率”指标来评测一个地方的信息化发展水平,这5个利用率分别是信息资源利用率、智能设施利用率、通信设施利用率、政府网站利用率和电子商务利用率。
信息资源利用率:主要数据来源是百度的搜索引擎,可以方便地统计出全国每一地区的搜索量,得出各地区网民的平均信息资源的利用能力,内容可进一步分为信息类、娱乐类、电子商务类。
智能设施利用率:包括银行卡刷卡量、市民卡刷卡量、交通卡刷卡量。这三类数据都较容易获取,人均智能卡使用率能够比较准确地反映城市智能设施的应用效果。
通信设施利用率:主要是地区通信数量,包括3G通信的比例,人均通信量越高的城市,信息化水平越高。通信量还包括城市进出人口的通信统计,可以反映城市人口的流动率,人口流动率也是反映城市信息化水平的重要数据。
政府网站利用率:政府网站点击率能够反映政府电子政务被使用的效果,电子政务网站向城市居民渗透率是评价电子政务效果的重要指标,这个数据并不难得到,分析这些数据对电子政务改进很有价值。
电子商务利用率:电子商务利用率也是评价一个地区信息化水平的重要指标,该数据可以向阿里巴巴订购,可以比较一个城市的电子商务普及率、物流覆盖率、居民消费能力,电子商务统计数据对于比较各地信息化水平十分重要。
上述数据除以地区人口数,即得到相应的信息化参数值。这些数据都是来自计算机的自动统计,在通过数据分析师的进一步整理,因而有着更好的客观性。如果有机构能够将这些数据组织为完整的系统向全国发布,对于各地政府的智慧城市建设会有很大帮助;而承担这项工作的机构有无行政权力并不重要,重要的是创意与合作能力,政府、民间都可以做,或许民间机构会做得更好。
将各地区信息化数据加工成为一个指数来进行信息化统一排名的必要性不是很大,因为各地区环境差异太大。但是,分类的排序却很有好处,有助于各地区看到具体的差距,以便于改进。将这五个参数用雷达图表达会更加直观,从雷达图上可以看出本地区信息化发展的薄弱环节,有助于地方政府改进工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03