
“土地信息+”能否激发千亿大数据应用市场
一块巨大的农业“互联网+”蛋糕正加速成熟。
农村土地承包经营权确权登记颁证,是农业现代化的基础。2008年,国家选择成都率先开展试点,2015年在四川、山东、安徽整省推进,至今年,在全国的整省推进名单上已有22个省份。这将产生大规模、精细化程度最高的土地信息大数据库。
一个巨大的市场接踵而至——基于土地信息大数据为基础的信息服务。
A “钱景”:
1500亿元大市场,5-10年迎爆点
“现代农业最核心的是数据,土地和人的数字化是基础。”1月13日,西南财大经济信息工程学院副教授罗旭斌开门见山。
在他看来,确权建立起的农场土地信息大数据,是农业最基础的数据,有了数据才能用信息技术精准“重构”传统农业,这是农业的巨大变化。
“确权的下游应用市场空间大概在1500亿元,商机相当广阔。”西南交大信息与技术学院博士李剑波特别强调,这只是这项农业信息化工作本身的投入,其引爆的整个产业链价值则是天文数字。
学计算机的罗旭斌和学地理信息的李剑波合作完成了中国首张现代鱼鳞图——都江堰鹤鸣村土地登记系统绘制,随后成立起集数据、地理信息服务、软件研发等于一体的四川鱼鳞图信息公司,产品和方案被应用于23个省200多个区县,成为行业领跑者之一。
罗旭斌把确权后的拓展应用称为“土地信息+”。在他看来,该领域应用广阔,如土地流转、数字农场、农产品销售、土地金融等社会化服务等环节,将为相关计算机软件、硬件、服务公司带来巨大发展机遇。如现有农产品质量安全追溯体系,精细不足,只有当土地信息数据与溯源公司数据互换,才能真正从餐桌一口气精准追溯到具体某块地头。以前搞土地流转只是本台账,现在土地在哪里有精准定位,将信贷与具体地块吻合,从而化解了银行隐忧。“未来两三年主体数据基本就位,真正有意义的市场化行为的流转应在3年后,5—10年就会迎来‘土地信息+’应用爆发高点。”李剑波预测。
B 困惑:
建数字化农场,商业模式还不成熟
谁会买单?
1月12日,省农业厅与西南交大围绕共建土地信息研究院签定战略合作协议。省农业厅厅长任永昌抛出了当下较为急迫的需求订单:高标准农田建设、土壤普查巩固、耕地质量提升等,都亟待通过基于农村土地信息数据的挖掘应用。 在省农业厅信息中心主任钱亮看来,这种应用挖掘应贯穿于农业生产、经营、管理和服务四大环节,“比如生产环节的物联网技术、经营环节的农村电商等,都与土地信息数据实现嫁接。”
与政府合作是一块大市场,但在李剑波眼里,未来真正的需求更多来自市场,在于日益崛起的新农人们和对农产品质量安全营养等要求愈来愈高的消费者。“核心还是为新农人建立数字化农场。”
全国同行如雨后春笋般出现。作为先行者,李剑波也坦承,目前对于如何精准挖掘应用,暂时毫无突破。“核心难点在于商业模式的设计。”
各地数据库还在建立当中,需求方也仅初具规模,应用突破成为整个行业的共同困惑。鱼鳞图公司今年也曾尝试一些应用新业态,但并未盈利。
C 突破:
政府合理开放数据,避免出现“数据鸿沟”
中科院成都计算机应用研究所高级工程师张炳泉表示,大数据应成为一种支持公众创新创业的公共资源,政府应避免垄断,在厘清权责关系的前提下,将数据向企业和个人开放,并用公信力为交易等应用“背书”。
钱亮也表示,农业大数据是三农公共事业,应在保护国家安全的情况下,有条件地与社会共享,“今后农民工流转出土地外出打工,用APP就能看到自家土地业主拿来种了啥,他有知情权。”
张炳泉看来,政府应从主导者变为服务者,可通过PPP模式等市场化模式与企业共同开发应用。“企业或个人利用大数据对集中起来的土地资源进行更合理的规划利用,实现精细农业、规模生产。”
钱亮强调,政府必须合理地自下而上建立大数据库,同时不能仅局限于土地信息数据库,还应尽快将质量安全信息溯源、农村三资管理、农村电商等方方面面的农业大数据统起来,打通各个环节,建立数据云,才能发挥出精准效应,跨越“数据鸿沟”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14