京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“土地信息+”能否激发千亿大数据应用市场
一块巨大的农业“互联网+”蛋糕正加速成熟。
农村土地承包经营权确权登记颁证,是农业现代化的基础。2008年,国家选择成都率先开展试点,2015年在四川、山东、安徽整省推进,至今年,在全国的整省推进名单上已有22个省份。这将产生大规模、精细化程度最高的土地信息大数据库。
一个巨大的市场接踵而至——基于土地信息大数据为基础的信息服务。
A “钱景”:
1500亿元大市场,5-10年迎爆点
“现代农业最核心的是数据,土地和人的数字化是基础。”1月13日,西南财大经济信息工程学院副教授罗旭斌开门见山。
在他看来,确权建立起的农场土地信息大数据,是农业最基础的数据,有了数据才能用信息技术精准“重构”传统农业,这是农业的巨大变化。
“确权的下游应用市场空间大概在1500亿元,商机相当广阔。”西南交大信息与技术学院博士李剑波特别强调,这只是这项农业信息化工作本身的投入,其引爆的整个产业链价值则是天文数字。
学计算机的罗旭斌和学地理信息的李剑波合作完成了中国首张现代鱼鳞图——都江堰鹤鸣村土地登记系统绘制,随后成立起集数据、地理信息服务、软件研发等于一体的四川鱼鳞图信息公司,产品和方案被应用于23个省200多个区县,成为行业领跑者之一。
罗旭斌把确权后的拓展应用称为“土地信息+”。在他看来,该领域应用广阔,如土地流转、数字农场、农产品销售、土地金融等社会化服务等环节,将为相关计算机软件、硬件、服务公司带来巨大发展机遇。如现有农产品质量安全追溯体系,精细不足,只有当土地信息数据与溯源公司数据互换,才能真正从餐桌一口气精准追溯到具体某块地头。以前搞土地流转只是本台账,现在土地在哪里有精准定位,将信贷与具体地块吻合,从而化解了银行隐忧。“未来两三年主体数据基本就位,真正有意义的市场化行为的流转应在3年后,5—10年就会迎来‘土地信息+’应用爆发高点。”李剑波预测。
B 困惑:
建数字化农场,商业模式还不成熟
谁会买单?
1月12日,省农业厅与西南交大围绕共建土地信息研究院签定战略合作协议。省农业厅厅长任永昌抛出了当下较为急迫的需求订单:高标准农田建设、土壤普查巩固、耕地质量提升等,都亟待通过基于农村土地信息数据的挖掘应用。 在省农业厅信息中心主任钱亮看来,这种应用挖掘应贯穿于农业生产、经营、管理和服务四大环节,“比如生产环节的物联网技术、经营环节的农村电商等,都与土地信息数据实现嫁接。”
与政府合作是一块大市场,但在李剑波眼里,未来真正的需求更多来自市场,在于日益崛起的新农人们和对农产品质量安全营养等要求愈来愈高的消费者。“核心还是为新农人建立数字化农场。”
全国同行如雨后春笋般出现。作为先行者,李剑波也坦承,目前对于如何精准挖掘应用,暂时毫无突破。“核心难点在于商业模式的设计。”
各地数据库还在建立当中,需求方也仅初具规模,应用突破成为整个行业的共同困惑。鱼鳞图公司今年也曾尝试一些应用新业态,但并未盈利。
C 突破:
政府合理开放数据,避免出现“数据鸿沟”
中科院成都计算机应用研究所高级工程师张炳泉表示,大数据应成为一种支持公众创新创业的公共资源,政府应避免垄断,在厘清权责关系的前提下,将数据向企业和个人开放,并用公信力为交易等应用“背书”。
钱亮也表示,农业大数据是三农公共事业,应在保护国家安全的情况下,有条件地与社会共享,“今后农民工流转出土地外出打工,用APP就能看到自家土地业主拿来种了啥,他有知情权。”
张炳泉看来,政府应从主导者变为服务者,可通过PPP模式等市场化模式与企业共同开发应用。“企业或个人利用大数据对集中起来的土地资源进行更合理的规划利用,实现精细农业、规模生产。”
钱亮强调,政府必须合理地自下而上建立大数据库,同时不能仅局限于土地信息数据库,还应尽快将质量安全信息溯源、农村三资管理、农村电商等方方面面的农业大数据统起来,打通各个环节,建立数据云,才能发挥出精准效应,跨越“数据鸿沟”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13