
针对2016年大数据发展形势的预测
2016年大数据技术将迎来怎样的发展态势?预计机器学习、实时数据即服务、算法市场以及Spark等等都将成为发展热点。
1.首席数据官全面崛起
随着企业努力克服由变化带来的冲击,同时需要立足于数字化时代与竞争对手进行对抗,相信将有更多企业将关注重点放在新的高管职位——首席数据官(简称CDO)身上。而这类角色也将成为推动业务发展战略的中坚力量。
“首席数据官将迎来权力、声明以及……存在感,”Forrester研究公司企业架构首席分析师兼副总裁pian Hopkins在一篇博文中写道。“不过从长远角度看,这一职能角色的可行性尚存在疑问。某些类型的企业,例如数字原住民,可能无法通过任命CDO获得回报。”
2. 支撑业务用户
受到大数据人才短缺以及必要商业信息交付能力匮乏的影响,市场需要更多分析师及数据科学家补充进来,并利用更多工具与相关功能将信息直接交付给对应的用户群体。举例来说,微软与Salesforce双方最近各自公布了此类方案,旨在帮助非程序员用户创建应用以审查商业数据。
3.智能化嵌入
无代码编写要求的应用已经成为企业需要重视的一种可行方案,旨在简化业务用户获取所需信息的流程。不过还将有另一些成果不断涌现,即在企业内各应用程序中直接嵌入分析功能。IDC公司预测称,到2020年将有半数商业分析软件包含以认知计算功能为基础的规范性分析能力。
而着眼于宏观角度,Gartner公司指出“自主性主体与方案”将成为另一大新兴趋势,目前已经出炉的相当方案包括机器人、自动驾驶车辆、虚拟个人助手以及智能顾问等等。
“在未来五年当中,我们将迎来所谓后应用时代,届时各智能化主体将带来动态及背景关联行为及接口,”Gartner公司副总裁兼研究员David Cearley在一份声明当中指出。“IT领导者们应当探索如何利用自主性方案及主体以强化人类活动并承接部分原本必须要以人工方式完成的任务。”
4.人才短缺问题能否得到解决?
还在苦苦寻求出色的数据科学家?相信我,其它企业也面临着同样的困扰。最近由商业咨询企业A.T. Kearney公司发布的一份报告显示,72%的全球领先企业都表示自己很难招聘到合格的数据科学人才。
不过国际分析协会则预测称,随着企业逐步采取新型战术思路,人才短缺的问题可能会在2016年年内得到缓解。
“大型企业不会再过多纠结于人才短缺问题了,”该组织在其预测与优先级展望报告中提到。“相反,他们开始采取一些其它办法解决危机,包括出台新的大学课程、改善招聘流程并建立内部规程,从而培养现有员工掌握分析与数据科学。如此一来,迫切希望实现数据分析能力的企业将最终得偿所愿。”
与此同时,IDC公司发布报告指出,这种人员短缺问题将由数据科学家领域延伸至数据架构以及数据管理层面。这将推动大数据相关专业服务业务从目前到2020年获得高达23%的年均复合增长率。
5.机器学习迎来上扬态势
所谓机器学习,可以理解为创建相关算法以帮助计算机通过经验实现学习,而其也成功吸引到了众多希望利用自动化手段取代以往人工处理流程的企业的高度关注。分析企业Ovum公司预测,机器学习将在2016年当中成为“数据准备与预测分析工作的必要前提”。
而Gartner方面则着眼于下个阶段,将先进机器学习技术视为最重要的未来战略趋势。这家分析企业宣称,机器学习中的各类先进表现形式名为深度神经网络,其能够创造系统并学会自行认知世界。“这一领域发展迅速,而各企业也必须评估自身要如何运用这些技术以取得竞争优势。”
6. 人人都爱Spark
分析企业Ovum公司指出,SQL将在大数据分析工作中获得“至高无上”的地位,但Spark的崛起速度同样非常惊人。“Spark将作为SQL的补充性方案,为我们提供额外的结论获取途径,例如实现图形分析流并帮助开发人员利用自己所熟悉的语言对企业数据库内的数据流进行查询,”Ovum公司首席分析师Tony Baer在一篇博文当中写道。
7.数据即服务业务模式即将出现
IBM公司刚刚收购了Weather公司,而获取后者数据、数据流以及预测分析方案的实质在于着眼于未来。各企业需要将数据流即服务打包成为新的业务模式。也有一部分企业着眼于相关软件包并出售自己的数据。Forrester公司预测称,部分企业将凭借这项发展战略获得市场成功,但“大部分无法取得实质性进展。尽管拥有乐观的承诺,但大多数企业其实很难解决个人信息保护以及对应商业模式所带来的复杂性难题,”Forrester公司副总裁pian Hopkins在他的个人博客当中写道。
8. 实时分析结论
Forrester公司预测数据流提取与分析将在2016年年内成为数字化领域胜出企业们的必要能力。
“将数据转化为实际行动的通道非常狭窄。在未来12个月当中,将有更多立足于Kafka及Spark等开源项目的开源数据流分析方案不断涌现,”Forrester公司副总裁pian Hopkins在博文中写道。
9.算法市场的兴起
这是Forrester公司提出的另一项预测。“各企业将意识到很多算法与其自行开发,不如通过市场购买,而后直接向其中添加数据即可,”Forrester公司的pian Hopkins写道。他同时列出了目前已经出现的几种此类服务,包括Algorithmia、Data Xu以及Kaggle。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27