
大数据可视化的思维
在数据领域我们主张用数据可视化思维去探索大数据的价值,我们知道2013年是中国大数据的元年,任何一家企业不把自己的产品业务和大数据联系在一起,就觉得是非常落伍的,但是真实的情况是不是这样的?目前火爆的市场概念和火爆的大数据想法并没有换来对大数据清醒的认识,相反是对大数据的困惑,我们的大数据如何落地到我们行业里面去,如何我们和产品结合起来,如何为我们客户创造价值,这些东西都是很关键的因素,其实我们知道尤其在为客户创造价值这一块,我们认为只有两个点才是真正帮助客户价值,一帮助客户赚钱,二帮助客户省钱,如果我们一项技术不要说它是不是大数据,它即便不是大数据的话,如果做不到这两点的话,它的未来成长性也是非常弱的。这不得不让我们重新思考大数据整个产业链发展,我们可以看到国外的大数据产业链其实是从数据的采集、处理、分析、可视化,最后出来一个产品交付给我们用户。
目前国内大部分用户和产品其实到了分析这个环节就会得出一个报告或者是一个结论,或者是一个软件等等交付给我们用户。我们换位思考一下,其实如果您是一位企业老总需要您花几百万甚至几千万购买一个报告或者是购买一个软件您是如何来思考这件事情,我们在想如何让客户心动,如何击中客户的重点,迅速让技术落地到行业当中去,让技术人员价值让业务人员或者让领导,或者让老板,或者让懂业务的这群人如何去理解他们,这个是数据可视化最关键的价值点我举例,我们某产品给某政府做的舆情系统,传统的舆情系统主要是帮客户做预警信息,得出一个信息结点,我们可以判断一个路径结点,比如什么地方又出现了一个什么样的状态,但实际上这个状态没有办法帮助我们客户去判断一个东西,判断他到底这个信息量有多大,是群体性事件,还是偶发性事件,是概率性事件还是大范围事件,所以我们帮助客户去分析这个信息需不需要处理,处理到什么样的阶段,这些都是值得我们需要重视的阶段,所以在我们这样一个产品上,需要帮助我们的技术连接到客户端里面去,让我们的决策层能够知道里面最核心的结点。
所以我们认为其实这是一个数据新闻的作品,在座的今天有很多媒体,我本人也是媒体出身,以前是新京报的,在媒体行业叫做数据新闻,今天欧美所有的一线媒体已经大范围地用数据新闻来产生自己的核心价值,已经不再用很多的文字了。所以我们从这样一个很简单的三公消费数据可视化里面,就可以看出来其实我们大部分的数据新闻已经改变了文字的作用。我今天想说的并不是在数据新闻上的发展,而是在于数据可视化如何帮助我们人,或者是我们用户更好地去理解它、更快速地认知它。国家工商总局为什么会在三公消费里面用这么多的钱,包括它的结算和预算这些东西都是值得我们看一看。
我们知道这旁边有一个工具生产出来的趋势图,其实我们知道数据的模型我们过去只有这种简单的二维趋势图或者是柱状图或者饼状图等等,这些没有准确帮助我们做出分析,因为大数据是做预测,并不是得到分析,我们今天得到所有的数据结果都是根据过去的经验得出来的,我们必须要重新定义它的横坐标、竖坐标,重新如何打颜色,如何去判断,所以我们有了3D,重新用这样一个图去定义什么是横坐标、竖坐标,颜色判断,重新定义这样大数据的价值在里面挖掘的这样一些点和空间是在什么地方。比如我们知道中间的一些结点,包括如果一个趋势图的话其实体现不了里面的距离等等,这样一个新的唯度。现在至少放到7到12个纬度以上的数据进去,这样我们知道数据和数据之间的关联和态势,因为我们知道其实数据是比较枯燥的,为什么我们讲数据分析师非常重要的,就是因为数据没有办法让大多数理解,我们如何快速地去感知数据之间的联系,必须依靠视觉的手段和视觉的感知能力去找到大数据和大数据之间的关联性和可能性,才能发现和挖掘,才能谈得上未来有可能性的结点。
其实今天比较匆忙,数据这方面也没办法太多地展开,我们海云数据目前是中国大数据这块的领导者,是微软和更多的这种用户的合作伙伴,都是他们选择了我。所以我们其实走到了今天非常感谢这些合作伙伴,因为他们让我们更加落地,更加懂客户,知道我们行业里需要什么样的东西,用数据可视化做出什么样的内容,这是我们更加关心的结点。
最后一个小小的分享,其实我们知道刚刚我说过这句话大数据的价值是用于预测的,而不是总结的,我们今天不得已而为之需要把我们过去可能信息孤岛的事情都还没解决,可能我们还谈不上用一些很酷的很舒服的分析能力得到未来的商业价值,但是这天一定会到来的,我们需要解决的是大数据的这种感知能力,所以我们希望用我们这种大数据可视化思维能力去解决这个问题,去探索这个问题,去发现这个问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
35岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13