京公网安备 11010802034615号
经营许可证编号:京B2-20210330
欢网大数据开启“全网+跨屏”用户画像新时代
长期以来,智能电视行业一直局限于电视端数据进行用户画像分析,希望以此进行精准营销,难道仅基于电视端收视数据进行用户画像就可以实现精准营销吗?此方式虽然取得一些成果,但是距大数据时代众多收视用户的精准营销还是距离遥远。近日,欢网大数据以卓越创新的“全网+跨屏”理念,掀起了电视行业融合全网大数据的精准营销革命,该理念通过关联智能电视与PC、移动端数据,不仅能够跨屏识别用户,而且可以获悉用户在不同终端的使用行为。此举打破传统电视行业信息孤岛,实现跨屏全网数据融合,颠覆电视端营销方式,打造通过分析用户线上线下行为数据获知真实潜在需求的精准营销平台,并以此提升基于智能电视平台所实现的“增强电视”、“T2O”等一系列精准营销的服务价值。
欢网作为国内最大的互联网智能电视服务商,自创立以来一直致力于成为电视内容的聚合者和分发者,而用户画像是提供个性化电视营销服务的基础。“全网+跨屏”融合更加全面的用户数据,这包括用户在电视端的收视数据、与其它智能终端的行为习惯数据。以热门综艺《奔跑吧兄弟2》为例,观看该节目的电视用户,平时主要活动区域、偏好何种APP软件、忠爱哪些品牌、喜欢吃什么玩什么等,通过全网数据的融合,了解其行为习惯,建立用户画像,将有助于精准营销、个性化内容推送,再度提升文化娱乐对消费行为的影响。
何谓智能电视用户画像?是收集、融合并分析智能电视用户海量收视数据以及全网使用行为后,判断其家庭收视偏好、消费行为与能力、家庭成员组成、潜在购物倾向等,最终梳理出不同属性的用户人群,为业务运营提供更充足的信息基础。
以下为欢网科技与TalkingData联合发布的热门综艺案列分析:
建立全网用户画像,是颠覆传统意义上仅以电视端数据进行用户画像的革命性的营销方式。多端数据的结合,可将更精准的服务推送给有潜在需求的用户,从而帮助需求方锁定用户群。此举有助于电视台、节目组、制作方、广告商更精确的了解受众用户,为之后编播节目、投放广告等带来极大价值。
欢网大数据打破了固有的“电视归电视,互联网归互联网”的局面。以“全网+跨屏”探索智能电视与互联网行业的未来,在颠覆传统理念的同时,让智能电视用户享受更优质的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20