京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,我们正在面临不平等
在大数据时代,除了此前的权力面前的不平等和财富面前的不平等,人类社会可能还会面临“大数据面前的不平等”。
一家国际著名保险公司与提供大数据的公司合作,推出一款针对不同驾车群体的保险计划。这一计划的要点是,由大数据公司对不同潜在客户的驾车习惯进行分析,如果数据表明某位客户是白天上班,路也近,而且所经过的地带是安全路线,客户驾车习惯良好,没有特别情绪化举动,那么,给其所卖的保险可以打折;反之,如果数据表明某位客户是上夜班,上班地点也远,所经过的路线有风险,客户驾车习惯也不好,常无法控制自己的行为,那么,保险公司将提高其所缴纳保费额度。从商业角度看,保险公司这样做,是为了更精确地细分市场,赚取更高利润,这是无可厚非的,甚至还算得上大数据时代商业营销的成功案例。但就是这一行为,在欧洲引发了一场关于大数据时代社会平等问题的讨论。
在使用大数据分析后发现,在欧洲上夜班、且上班地点远、驾车经过路线复杂的,大多是低收入者和有色人种。由于长距离驾车,且夜班易疲劳,这部分人群的驾车习惯相对不那么好,驾车时情绪也不那么好控制,不少人甚至一路骂骂咧咧。而那些中产阶层以上人群,一般都上白班,上班地点近,路线也很安全,驾车习惯也好。如果按照保险公司的方案,这就意味着在社会学意义上本应该得到同情甚至帮助的低收入者,反而要缴纳更高的保费;而本来收入就高的人群,反而在获得保险上能得到优惠。如此一来,如何谈得上社会公正?
其实不仅仅是保险业,当下在欧美,大数据与金融行业的结合正越来越受到重视。一些商业银行利用大数据,寻找最合适的放贷对象,排除潜在的可能违约者。而事实上,所谓最合适的放贷对象,往往就是那些收入有保证、信用记录好、能还得起贷的高收入者;而潜在的可能违约者,多是那些本来就生活在社会底层,很难有好的信用记录的人。恰是后一部分人,他们有心创业时,更需要得到金融方面的支持,而由于大数据时代任何个人收入情况、信用情况、创业成败记录以及家庭背景等等,都一览无余。于是,与大数据时代以前任何一个时代相比较,低收入者更可能被排斥在资本市场之外,他们与有产阶层的财富鸿沟无疑也将进一步扩大。
美国一个黑人学者研究大数据库后还担心,在大数据时代,将强化种族歧视,且不给任何一个犯过错误的人以改过自新的可能性。在谷歌为某些企业定制的就业数据库中,这位黑人学者填入一些姓名后发现,与白种人相比,数据库中对黑人提供了更为详细的信息,这些信息中包括了家庭是否离婚、性取向、宗教和政治观点、智力水平、成瘾药物使用等等,这使得企业对使用黑人更加谨慎。不仅如此,数据库还特别搜集到联邦警务、检察和法院系统发布的各种信息源,一旦所查询的对象曾有公开的违法记录,就会自动触发一个警告设置,告诫企业人力资源部门:这个人有不良记录,小心雇用。因此,经过大数据的筛选,凡有过违法记录的人,几乎很难靠自身在市场上获得就业机会。
有人曾一度以为,因为大数据是匿名的,且互联网上的个体身份被确认的可能性并不大,即使有歧视,但不是针对特定的人。研究大数据时代歧视问题的学者发现,通过大数据分析技术,仅仅4项参照因素,就足以认定互联网上95%的匿名者身份。由于商业利润巨大的诱惑,大数据公司高度个人化的大数据集,已成为黑客与“揭秘”者觊觎的主要目标。所以,与此前相比较,在大数据时代,阶层歧视、种族歧视可能被强化,更具体地针对个人的“区别性对待”,也将更加泛滥。
在大数据时代,除了此前的权力面前的不平等和财富面前的不平等,人类社会可能还会面临“大数据面前的不平等”。而不平等问题,却是市场与技术本身永远无法解决的。这也为政府管理的必要性预留下更大空间。简单地说,市场每借助于技术革命拓展一步,政府管理也必将如影随形。因此,既要更好发挥市场作用,也要发挥好政府作用。即使是大数据时代,也是一条不变的“铁律”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16