京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据助推通信业“华丽转身”
横空出世的大数据所释放出的巨大“能量”,如今已经波及大部分传统行业。其中,作为与大数据有天然紧密联系的通信业更是首当其冲。 运营管道中的数据是通信运营商多年来业务的积累,其间蕴藏着丰富的业务信息和商业信息。如何挖掘出这些数据的巨大价值而在大数据时代傲视群雄,成为运营商当前所面临的头等大事。 改变通信业现状 早在2012年,idc就发布研究报告指出:全球大数据市场规模将从2010年的32亿美元增长至2015年的169亿美元,年均增长率高达40%以上。 当前,通信行业已成为大数据最有作为的细分行业之一。
随着网业分离的加速实施和ott(互联网向用户提供各种应有服务)业务的不断渗透,目前通信运营商正逐步沦为“流量管道”。在互联网企业逐步成为电信业务主要提供者的趋势下,运营商的传统业务受到前所未有的冲击,用户的arpu值(每用户平均收入)也在同步降低。 在此背景下,通信业与大数据结合所带来最直接的改变,是推动了运营商与维护部门职能角色转换。 赛迪顾问通信产业研究中心分析师杨光接受《中国科学报》记者采访时表示,在大数据时代,网络侧的数据将成为有价值的蓝海,通信运营与维护部门可对海量的网络侧数据进行分析,以支撑市场部门营销活动,从被动响应客户的需求走向主动为其运营、维护,就此实现了职能的转型。 电信分析人士马继华也对《中国科学报》记者指出:“大数据与通信业结合可以提高运营商的管理水平,实现网络的优化。” 此外,运营商可以利用大数据分析寻找目标客户,制定有针对性的营销计划和产品组合,为不同用户群体提供差异化服务,实现精准营销。
在分析人士看来,传统的运营商业务决策由bss(业务支撑系统)数据决定,大数据出现后,运营商加强了bss数据和oss(运营支撑系统)数据的整合,甚至可以通过多维度的数据挖掘直达每一个用户、每一桩业务的细颗粒度分析,对用户进行精准画像。 “简言之,运用大数据能显著提高通信业对存量用户的管理能力。”杨光说。 同时,随着大数据时代的来临,运营商的成本支出也将出现下降。 盈利模式被颠覆 更为重要的是,大数据的出现将颠覆通信运营商的盈利模式和格局。 在过去,传统运营商的商业模式往往只提供管道而不关心内容。但是,在大数据出现之后,运营商管道内庞大且丰富的网络侧数据,可以为运营商提供深层次的经营决策支撑。
“运营商掌握大量别的行业所没有的数据,比如用户的通话轨迹等等,具有先天的优势,不仅数据量大,而且可靠性高。”马继华说。 长期以来,各个行业用户往往只专注某一领域,缺少宏观数据的视角。而通信业运营商可以利用自身数据与网络资源方面的优势,为这些行业用户提供定制化分析报告。 马继华说:“运营商可以运用大数据在不同行业中发现好的商业机会。以往他们只是将数据用于管理和决策的需要,并没有做成产品,而现在运营商完全可以将其做成数据分析产品出售给不同的行业用户。” 杨光也表示,未来新的通信业盈利模式之一即是面向行业用户提供增值服务。
“比如面向行业用户提供定制化报表,对流量、用户访问记录等个性化信息进行多维度分析,为行业用户提供端到端的业务质量管理。” 同时,运营商可以推出面向个人用户的短订购模式。比如以大数据分析为基础,将用户群细分,依托精细化营销平台面向每个自然用户推出多元化流量包套餐,支持不同场景下用户使用习惯。 在流量不充足时,用户可根据个人情况随时订购流量套餐,保证数据业务持续使用——目前,国内运营商已经正在积极推进这一新业务。
此外,通信运营商还能与ott企业或虚拟运营商进行合作共享数据,杨光指出,运营商可以采用收入分成的方式,与ott企业或虚拟运营商达成合作意向,通过技术改进保证特定ott业务使用者的业务质量,利用定向提速、定制套餐等手段提升用户感知,增加用户使用ott业务黏度,提高用户arpu值。 并非一路坦途 当然,进入大数据时代的通信业并非一路畅通无阻,仍然有许多因素在阻碍其“华丽转身”。 马继华告诉记者,运营商虽然掌握大量数据,但是对个人用户具体资料掌握得并不清楚。而且由于多年来数据无法给运营商带来商机,因此他们对于数据的保存并不重视。 “很多数据在系统维护时就被抹掉或者替换了,这对分析用户使用习惯的连续性有很大的影响,很多数据因此失去分析的意义。”马继华说。
而且,当前大数据的数据量级正在突破现有的物理设备上限,导致运营商需要不断增加存储平台以应对数据增长态势。 “基础设备的建设速度远远跟不上数据增长速度,烟囱式的系统架构投资过大且无法一次成型。”杨光说。 他建议,运营商可以建立自己的云网络,使用云存储手段实现数据的分布式存储,根据需求逐步扩充存储平台空间,形成数据存储的弹性架构。 此外,数据共享问题也应当引起运营商的重视。大数据应用的前提自然是数据开放,运营商如何在保证安全与隐私的前提下,最大限度地为用户提供数据共享的便利,成为在大数据实施规模应用前亟待解决的问题。
“可以培育数据管理人才,组建专职人才队伍负责数据开放共享,制定数据共享操作规则和相应规章制度,以强化隐私安全保护的重要性。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11